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1 Introduction

During training, generative large language models (LLMs) are exposed to vast amounts of
information, including data relevant to economic modelling, such as geospatial statistics
and firm-level financial metrics. If LLMs can effectively retrieve and utilise this knowl-
edge, they could reduce dependence on external data sources that are time-consuming
to access, clean, and merge, or that incur financial costs. Moreover, if LLMs accurately
represent data, they could support downstream tasks like data imputation and outlier
detection. In this study, we evaluate whether and how LLMs can be used for typical
economic data processes.

Not all knowledge within an LLM may be explicit and retrievable in natural language by
prompting the model. Instead, we hypothesise that LLMs have latent knowledge about
entities such as firms or regions, which is only retrievable with access to the hidden states
– also referred to as embeddings – of the LLM. For example, suppose we prompt an LLM
to estimate the proportion of mortgages in arrears in Orange County, California. If this
exact data point was not present in the training corpus, the model may be unable to
provide an accurate written answer, despite having a generalised economic understanding
of US counties that could inform an estimate. Furthermore, it is plausible that extensive
post-training aimed at reducing hallucinations may have diminished a model’s inclination
or ability to make educated guesses. We tap into the LLM’s generalised knowledge using
its hidden states and find that these allow us to produce better estimates of economic
and financial variables than the text output. While proprietary LLMs typically do not
expose their hidden states, they are accessible in open-source models.

We test the usefulness of LLMs for data tasks with a large array of empirical analyses
on regional economic data of the US, UK, EU, and Germany and financial data on US
listed firms. First, we show that a regularised linear model learned on the hidden states
often provides substantially better estimates of the economic and financial variables than
the text output of the model, particularly for less common statistics. This result holds
across open-source LLMs of varying sizes (1–70 billion parameters). A learning curve
analysis finds that small samples of labelled data usually suffice to learn an accurate
linear model on the embeddings. We also suggest a simple transfer learning algorithm
that estimates a statistical variable without any labelled data for that variable. We
achieve this by both learning from other labelled variables and using the text output of
the LLMs as noisy labels on the variable of interest.

Another way to leverage an LLM’s economic or financial knowledge is by using a rea-
soning paradigm that allows the model to break down the estimation task into steps,
reflect on its knowledge and reasoning process, and refine its approach before arriving
at an answer. While we find that a reasoning LLM outperforms the direct text output
of a comparable model not tuned for reasoning, our approach—applying a linear model
to the prompt’s embeddings—remains superior. It not only delivers better results but
is also orders of magnitude more computationally efficient.
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Finally, we investigate the practical relevance of our findings for two data processes.
Firstly, we show that we can exploit the embeddings to consistently improve the im-
putation of missing values in economic and financial variables, a common challenge in
both research and industrial data pipelines. Secondly, we demonstrate that the hidden
states of LLMs can be used for super-resolution tasks, inferring lower-level geographical
statistics from high-level data, which can enable the estimation of statistics below the
official reporting level. In both applications, we do not assume the LLM has seen the
target statistics during training and can recall them by prompting; instead, we leverage
the generalised, entity-level knowledge encoded in the model’s hidden states.

Our findings support the value of LLMs in data processing tasks, which warrants atten-
tion, given that tasks such as identifying data sources, extracting numeric information,
merging data series, and handling missing values are time-consuming and error-prone.
This is evident from the numerous data providers that sell packaged, cleaned, and well-
structured datasets, even when a large proportion of the underlying data is publicly
accessible online.

This study is structured as follows. Section 1.1 discusses the relevant literature, Section
2.1 describes the datasets and Section 2 outlines our empirical approach. The main
results on the accuracy of our approach to estimate economic variables from embed-
dings are shown in Section 3. Section 4 presents the methodology and results for two
data processing tasks using embeddings: imputation and super-resolution. Section 5
concludes.

1.1 Literature review

Our study is most closely related to papers that investigate how well LLMs can recall
geospatial statistics. Manvi et al. (2023) show that both GPT3.5 and fine-tuned Llama 2
can be prompted to reproduce geospatial information, such as population density, mean
income, education, or house prices. The LLMs recall these variables more accurately
than supervised machine learning methods, which inferred the information from other
data sources such as satellite images of luminosity at night. Note that the authors only
consider the text output of the LLM and do not exploit the hidden states as we do.

Similarly, Li et al. (2024) test how well LLMs can reproduce a large set of variables
about cities and regions such as population density, life expectancy, average travel time,
and number of patents. As in our study, this paper tests the accuracy of both the text
output and a linear model on the hidden layer activations to estimate the statistics.
However, they focus on a third approach: they ask the LLM to identify relevant features
that can help to predict a variable of interest and then ask the LLM to generate values
for these variables. After feeding these variables into a supervised ML model to predict
the variable of interest, this approach performs on par with a linear model on the hidden
states in 5-fold cross-validation. In contrast to our work, this paper focuses purely
on how well the LLMs can recall statistics and does not consider transfer learning or
downstream tasks.
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Our main empirical approach of learning a linear model on hidden states of a language
model is known as linear probing in the literature (Belinkov, 2022; Alain and Bengio,
2016) and has been used to understand the inner workings and capabilities of LLMs.
Our study builds in particular on the findings by Gurnee and Tegmark (2023), showing
that hidden states of LLMs linearly represent space and time. Concretely, a linear model
trained on the hidden states of Llama 2 accurately infers the death of historical figures,
the release year of artworks, or the geographical location of landmarks. Godey et al.
(2024) investigate the scaling laws of these results, showing that larger models represent
space and time more accurately. Further, Chen et al. (2023) perturb activations in the
LLM to show that there is a causal connection between the representations and the text
output.

Zhu et al. (2024) use linear probing to show that LLM embeddings represent the results of
simple addition problems. While the exact number cannot be reconstructed using linear
probes, the correlation between the actual number output and the inferred number (via
the probes) is high. Linear probing is also used to gauge the truthfulness of statements
(Marks and Tegmark, 2023; Orgad et al., 2024; Bürger et al., 2024) and Liu et al. (2024)
show that hidden states can also be leveraged to estimate uncertainty of LLM responses
in different tasks.

Our work also relates to studies that use hidden states of LLMs for downstream tasks
such as classification. Particularly, Buckmann and Hill (2025) showed how a linear model
trained on hidden states of small LLMs after task-specific prompting can outperform
GPT-4 when trained on only a few dozen samples per class (see also Cho et al., 2023).
Hidden states of LLMs have also proven to perform well as general text embeddings
(Lee et al., 2024; Rui Meng, 2024) as evidenced by their competitive performance on
the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022), which
includes tasks such as clustering, re-ranking, retrieval and classification.

Our transfer learning strategy draws on the literature on deep learning from noisy labels
(see Song et al., 2022, for a review). Consistent with prior findings that deep networks
can generalise beyond noisy supervision and achieve test accuracy above the quality of
the training labels (Rolnick et al., 2017; Oyen et al., 2022), we observe that our model
outperforms the noisy labels derived from LLM outputs. Moreover, following evidence
that neural networks learn clean signal early and only later memorise noise, we employ
early stopping to curb overfitting (Liu et al., 2020).

The literature on the use of LLMs for data imputation and super-resolution tasks – the
two practical applications of our methodology that we explore in this study – is scarce.
Hayat and Hasan (2024) fine-tuned Llama 2 to impute missing values given a textual
description of the instance’s features. Ding et al. (2024) use a similar approach for data
imputation in recommender systems. By contrast, we do not rely on text output but use
the embeddings of the LLM as additional features when employing standard imputation
methods.

While there exists a rich statistical and machine learning literature on the estimation
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Name Observations Variables Regional level Grouping variable Year
US counties 3142 9 counties 51 states 2019
German districts* 401 13 districts 38 gov. districts 2019
UK districts 374 8 districts (LADs) 12 regions 2019
EU regions (NUTS2) 244 7 NUTS-2 27 countries 2019
US listed firms 1986 9 N/A N/A 2022
*In German, the regional level is referred to as Kreise und

kreisfreie Städte and the grouping level as Regierungsbezirke.

Table 1: Datasets. Appendix A provides full documentation of datasets and sources.

of geospatial statistics at a granular level (Tzavidis et al., 2018; Chi et al., 2022; Aiken
et al., 2022; Viljanen et al., 2022), we are not aware of any study that explores the use
of LLMs for this purpose.

2 Methodology

2.1 Datasets

We use four public regional datasets covering US counties, EU regions, UK districts and
German districts. Additionally, we use a dataset containing public financial information
about US listed firms. The datasets are listed in Table 1. We assembled the datasets
using different public sources, which are described in detail in Appendix A. All datasets
are cross-sectional and are based on statistics from 2019, with the exception of the US
firms dataset for which we obtain data from 2022.1 Intentionally, all datasets predate
the 2023 knowledge cut-offs of the LLMs we tested so that we can assess whether the
LLMs can exactly recall statistics.

Key variables that we use in the regional datasets are population, GDP per capita,
unemployment rate, a measure of the income per capita, and a measure of life expectancy.
Key variables we observe in the US firms dataset are total assets, market capitalisation,
profitability metrics such as return on equity and return on assets. The full list of
variables in all datasets are shown in Table AIII. For the super-resolution analysis in
Section 4.2 we use additional data that we describe in that Section. We provide more
extensive results for our main datasets, US counties and US listed firms, which contain
a larger number of observations than the other datasets.

2.2 Experimental set-up

We exclusively use open-source LLMs, as, to the best of our knowledge, none of the
providers of the leading proprietary models provide access to the hidden states of their
generative models. Furthermore, we focus on smaller models because these are easier
and cheaper to use. The models we test are listed in Table 2. In the main experiments,

1The free tier of the Yahoo Finance API limits access to earlier history.
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Name Source Quantisation
Main models
Llama 3.2 1B-Instruct huggingface.co/meta-llama no
Phi-3-Mini-4K-Instruct (3.8B) huggingface.co/microsoft no
Llama 3 8B-Instruct huggingface.co/meta-llama no
Llama 3 70B-Instruct Text: replicate.com/meta no

Embeddings: huggingface.co/bartowski IQ2 M.gguf
Reasoning experiments
Qwen QwQ-32B Text: groq.com: qwen-qwq-32b
Qwen 2.5 32B Text: groq.com: qwen-2.5-32b

Embeddings: huggingface.co/Qwen q4 k m.gguf

Table 2: LLMs used in this study.

we consider three models of the Llama 3 family (1B, 8B and 70B parameters) and the
Phi-3-mini (3.8B parameters) model. Apart from Llama 3 70B, we accessed the models
through the transformers library (Wolf et al., 2020) on an NVIDIA Tesla V100 GPU.
Due to its large size, we use a quantised version of Llama 3 70B on 2 NVIDIA T4 GPUs
and obtain the embeddings with the llama-cpp-python library. To obtain this model’s
text outputs, we use the non-quantised model hosted on replicate.com. More details
on the computational requirements can be found in Appendix B.1.

We also consider a reasoning model: Qwen QwQ (32B parameters). To assess whether
the reasoning paradigm improves the estimation of regional and financial statistics, we
compare the model directly against Qwen 2.5 32B, which is the general-purpose LLM
on which Qwen QwQ is based. To obtain the text output of both models, we use the
instances hosted on groq.com. We obtain the embeddings of Qwen 2.5 32B from a
quantised version using llama-cpp-python.

We prompt the models using a completion prompt as follows:

The {variable} in {region} in {year} was

For example, we use the prompt: “The population in Orange County, California in 2019
was”. We also tested several other prompting strategies including a question-answering
prompt, a few-shot prompt, and a chain-of-thought prompt. Appendix B.2 shows how
the completion prompt delivered the most accurate results, on average.

When training a linear model on the embeddings, we also test a generic prompt, which
does not vary with the variable of interest but just embeds the name of the entity and
the year (e.g. “Orange County, California in 2019”).

2.3 Linear model on embeddings (LME)

We fit a ridge regression model on the hidden states of the prompt’s last token. Our
baseline model has 32 layers, with a 4096-dimensional embedding vector. If not stated
otherwise, we use the embeddings of the 25th layer because LME performs better on this
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layer than on others (Figure AV in the appendix).

To estimate the performance of LME, we employ grouped cross-validation on the regional
datasets. Specifically, we ensure that the training and test sets do not share any values
of the grouping variable. The grouping variable for each dataset is shown in Table 1. For
US counties, for example, the grouping variable is US states. Our baseline results are
based on 25 repeats of repeated 5-fold cross-validation but we also report learning curves,
where, adhering to the grouping, we sample training sets of increasing size.2

We either train the linear model on the embeddings directly or on the first k PCA
components, with k ∈ {5, 10, 25, 50, 100, 200}. We fit the PCA to all observations and not
only on the training set. The regularisation parameter α is tuned over 50 logarithmically
spaced candidates between 10−5 and 105. The selected α minimises the mean squared
error under 5-fold grouped cross-validation within the training set.

We denote the ground-truth values of the variable of interest by y, the embedding matrix

by E, and the LLM’s textual output by
txt
y .

2.4 Data transformations and performance metrics

To avoid a strong influence of outliers on the performance metrics and on the estimation
of LME, we transform some of the dependent variables. Specifically, across all datasets,
we applied a log transformation to non-negative variables with a skewed distribution. For
skewed variables with negative values, we use a cubic transformation (f(x) = sgn(x)×
|x|

1
3 ). The transformations applied to each variable are reported in Table AIII.

When assessing the performance of the text output and LME, we test both models on
exactly the same observations. The text outputs of the LLMs sometimes fall outside the
range of expected values (e.g. unemployment rate > 50%). In this case, we decide to
remove the observations. Parsing numeric values from LLMs’ textual answers is challeng-
ing, due to the inconsistent format and inconsistent use of units. We made considerable
effort to correctly parse the text output and conducted comprehensive manual checks
on all variables to ensure the accuracy of our parsing approach. Our parsing approach
is described in detail in Appendix B.3.

Despite the use of data transformations and the removal of obvious outliers, we still ob-
serve some outliers in the values parsed from the text output. To minimise the influence
of these outliers on performance, we employ Spearman correlation as our main perfor-
mance metric, measuring the rank correlation between the ground truth and estimated
values of the variable of interest. We also report our key results for Pearson correlation
and do not observe a qualitative difference in our conclusions.

2We repeat the learning curve sampling procedure between 30 and 300 times, depending on the
dataset size and training sample size.
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3 Using LLM embeddings to infer statistics

We start our analyses with a cross-validation exercise comparing the performance of
LME and text output. Next, we run a learning curve analysis to understand how many
training samples are required for LME to perform well. Finally, we test different transfer
learning approaches, where we try to estimate a variable without access to any labelled
data on that variable. In this section, we focus on the performance of the baseline LME,
a ridge regression model trained on all 4096 embedding dimensions (i.e. without PCA)
of the 25th layer of Llama 3 8B.

3.1 Cross-validation

Figure 1 compares the performance (Spearman correlation) of the text output to the
baseline LME learned on the embeddings of the completion prompt and the generic
prompt. The variables are ordered by decreasing performance of the text output.3 LME
based on the completion prompt performs better than LME on the generic prompt in all
datasets except the US firms data, where both perform equally well on most variables.
We therefore focus on the completion prompt in the following analyses.

LME beats the text output most of the time. The performance advantage of LME
increases with decreasing performance of the text output. On more common variables,
such as population, or unemployment rate, the text output performs as well as, or better
than, LME. On less common statistics, however, such as the proportion of mortgages that
are at least 90 days delinquent (US counties) or the number of government employees
(German districts), LME performs substantially better. The results are similar when
choosing Pearson correlation as the performance metric, as shown in Table AIII and
Figure AII in the Appendix.

Figure 2 plots the actual values against both the inferred values of LME (completion
prompt, top row) and the text output (bottom row) on a few variables of the US counties
dataset. The text output exactly recalls the population in a large number of counties,
particularly for those counties with a large population. For the other variables, however,
the text output is clustered on a few distinct values.4,5 By contrast, the distribution of
LME predictions does not cluster but also does not reproduce the exact values.

For the US states dataset, we also evaluate the performance of the text output and
LME within states. To obtain stable estimates we exclude states that have less than
50 counties. Figure AVI in the appendix compares the Spearman correlation between
the ground truth and the text output and LME, respectively. Except for the population

3See Table AIII for a tabular representation of the results including a measure of uncertainty, which
we omitted from these charts to improve legibility.

4Clustering of values in the text outputs has also been observed by Li et al. (2024) in their analysis
of LLMs’ knowledge of regional statistics.

5Note that the values are not just clustered by US state. We typically observe several unique values
within states as shown by Figure AVII which depicts the number of unique ground-truth and text output
values for each state.
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US counties

Spearman correlation

No. of businesses
/population

Prop. mortgages delinquent

P.c. in population

GDP

Two−bedroom rent

Income

Unemployment rate

Life expectancy

Population

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Text output
LME (completion)
LME (generic)

German districts

Spearman correlation

New housing

Investments per employee

No. of hospital beds

University qualification
(%)

No. of gov employees

No. of business
registrations

Corporate insolvencies

GDP

P.c. in population

Average age

Income

Unemployment rate (%)

Population density

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

UK districts

Spearman correlation

GDP

Annual gross pay

Life expectancy

Unemployment rate

Age

Income deprivation

Population

Average house price

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

EU (NUTS2)

Spearman correlation

No. of burglaries
/population

GDP

Risk−of−poverty rate

Population

Net household income

Life expectancy

Unemployment rate

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

US listed firms

Spearman correlation

Cost−to−revenue ratio

Debt−to−equity ratio

Price−earnings ratio

Price−to−book ratio

Return on equity

Return on assets

Return on revenue

Total assets

Market capitalization

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Cross-validation performance. The variable labels are shortened. The full
variable names used when querying the LLM are shown in Table AIII.
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Figure 2: Comparing actual values (ground truth) to the predicted values by LME (top
row) and the text output (bottom row).

variable, we observe a performance advantage of LME over the text output in most
states.6

3.2 Robustness

We test whether we can improve the performance of LME by reducing the dimensionality
of the embeddings using a PCA before training LME. For our two key datasets, US
counties and US firms, Figures AIII and AIV in the appendix respectively show that
LME usually performs best without applying PCA.

We also compare the performance by layer and see that across the key datasets, em-
beddings from the 25th layer perform better on average than those from earlier or later
layers (Figure AV in the appendix). However, the differences in performance are small
with the exception of the lower performance when using layer 5, the earliest layer we
examine.

6We cannot show the variable proportion of mortgages being delinquent because it has a low coverage
in the raw data, which is why we do not observe at least 50 non-missing observations in any state.
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3.2.1 Comparing base models

To test whether our finding that LME tends to beat the text output generalises across
model families and model sizes, we run the cross-validation analysis on our two largest
datasets (US counties and US listed firms) for all four LLMs.

Figure 3 (left panel) shows how the performance of LME improves consistently with
increasing model size.7 The middle panel of the figure shows that the accuracy of the
text output also increases with larger models, but less consistently. The right panel shows
the difference in Spearman correlation of the two approaches (LME - text output). While
the mean difference (in red) is larger for the small models, it is still large – on average
16 percentage points – for the 8B and 70B model.
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Figure 3: Performance of LLMs of different sizes.

3.2.2 LME vs. a reasoning model

Since 2024, it has emerged that the performance of language models does not only
scale with training-time compute (i.e. larger models and more training data) but also
test-time compute. Allowing an LLM more time to generate responses, break down
tasks into multiple steps, and reflect on its reasoning process significantly enhances its
performance on reasoning tasks. We test whether this reasoning paradigm is also useful
for our specific task: Can an LLM accurately reason about its internal knowledge of
regions and firms, integrate this information, and ultimately provide precise estimates
of relevant statistics?

We use the open-source reasoning model Qwen QwQ-32B (Qwen Team, 2025). It is
based on Qwen 2.5 32B (Yang et al., 2024), an LLM not tuned to reason using test-time

7As the models differ in their number of layers, we train LME on the embeddings of the last layer
of each model. Furthermore, while LME on the embeddings of the Llama models work best when
no dimensionality reduction is applied, Phi generally performs better when training LME on 25 PCA
components. Thus, we applied the dimensionality reduction for Phi.
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compute. By comparing these two models, we can directly measure the effect of the
reasoning paradigm on accuracy.8 We pit the text output of the two models against
LME trained on the embeddings of the final token of the prompt of the Qwen base
model (Qwen 2.5 32B). Due to the high computational costs of the reasoning model, we
only test it on a subsample of 500 entities per variable.

A closer look at the reasoning process reveals that the LLM tries to reconcile different
information to provide the best estimates based on its knowledge.9 However, despite the
efforts, we do not observe a consistent increase in performance.

Figure 4 shows the results for our two main datasets. Overall, we do not see a consistent
improvement in performance when using the reasoning model to generate the text output.
However, the reasoning model performs substantially better on the three US county
variables on which the non-reasoning model performs worst. LME beats the text output
of both models on most variables. The difference in computational costs is significant.
The reasoning model uses a median of 1767 output tokens, whereas Qwen 2.5 answers
the question with a median of 8 tokens.

US counties

Spearman correlation

Prop. mortgages delinquent

No. of businesses
/population

Life expectancy

GDP

P.c. in population

Income

Unemployment rate

Two−bedroom rent

Population

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Text output Qwen QwQ (reasoning)
Text output Qwen 2.5 (no reasoning)
LME Qwen 2.5 (no reasoning)

US listed firms

Spearman correlation

Price−earnings ratio

Cost−to−revenue ratio

Debt−to−equity ratio

Price−to−book ratio

Return on revenue

Return on equity

Return on assets

Market capitalization

Total assets

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Cross-validation performance comparing reasoning model Qwen QwQ (text
output) to Qwen 2.5 (text output + LME).

8In contrast to the previous experiments where we use a completion prompt, we use the question-
answering prompt (see Section B.2) for the two Qwen models in order to elicit reasoning behaviour.

9For example, when asked for the proportion of delinquent mortgages in Atlantic County, New Jersey
in 2019 one of many points the reasoning model made was “Wait, I think that in 2019, the national
delinquency rate was around 3-4%, but that’s the national average. Atlantic County might be different,
especially if it’s a coastal area that might have been affected by Hurricane Sandy in 2012, but that’s a
few years prior. Maybe the recovery from that could affect 2019 numbers? Not sure.” Another sentence
from the same answer: “Hmm, I’m not entirely sure, but I think the national average was around 1.8%,
and New Jersey might be a bit higher. Since Atlantic County is a county with some economic challenges,
maybe it’s a bit higher than the state average.”
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3.3 Learning curves
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Figure 5: Learning curve analysis.

The cross-validation results show that we can infer statistical variables more accurately
from the embeddings than from the text output. However, the 5-fold cross-validation
setting assumes that 80% of the values on the variable we are predicting are available
to the modeller. If LME can reach a high accuracy with only a small number of la-
belled data points, its relevance for data processing tasks will be much higher. To test
this, we conduct a learning curve analysis, estimating model performance as a function
of the number of training samples. Figure 5 compares the text output (red line) with
LME trained on progressively larger training sets from the US counties and US firms
datasets. LME’s performance often converges with only a small number of training sam-
ples. Dimensionality reduction using PCA improves performance on some variables for
very small sample sizes and when restricted to two components. Figure 6 summarises the
learning-curve results across all datasets, comparing the text output with the baseline
LME at training sample sizes of 25, 50, and 100 observations. With only 25 samples,
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Figure 6: Comparison between text output and baseline LME with different training
samples.

LME outperforms the text output for most variables, showing a mean Spearman corre-
lation 5 percentage points higher.

3.4 Transfer learning

3.4.1 Learning from embeddings of other variables

The previous analyses assume that we have at least some labelled instances of a variable
to estimate its values on other instances using the embeddings. Here, we test whether
we can reliably estimate a regional or firm variable without access to any values of
this variable. If the embeddings encode numbers in a consistent way across different
variables, we should be able to predict variable vtest using a model learned from other
variables. More formally, given all variables V of a dataset with n entities, we train
a regression model on embeddings Ei and outcome values yi of entities i, and test
the models on variable vtest. Training observations are described as {(yvi, Evi) : v ∈
V \ {vtest}, i = 1, ..., n} and test observations as {(yvi, Evi) : v = vtest, i = 1, ..., n}. Note
that Ev ̸= Ew, ∀v ̸= w, as we use the completion prompt to obtain the embeddings,
which also contains the name of the variables.

To ensure our model is flexible enough to learn generalised embeddings, we train a
neural network with two layers (128 neurons and 32 neurons, Leaky ReLU activation
function) as our transfer learning model. We use the Adam optimiser with an initial
learning rate of 10−5. To avoid overfitting, we only learn for 20 epochs and apply a
strong dropout of 0.5 on the first layer. We test this approach on all five datasets. All
variables are transformed as described in Section 2.1 before they are normalised (mean
of zero, standard deviation of one).

The left panel of Figure 7 compares the performance (Spearman correlation) of this
approach to the text output. Each dot reflects one variable, for which a separate model
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was trained on all other variables of the same dataset. This approach to transfer learning
does not beat the text output. While transfer learning is superior in some cases, it falls
behind the text output most of the time. We obtain similar results when using a linear
model instead of the neural network. We also test another simple transfer learning
approach, where we predict variable y in Dataset A from the same variable of different
datasets. For example, we train a model on the unemployment rate of the UK and Europe
to predict the unemployment rate in the US. However, this transfer learning approach
is also inferior to the text output on average, and sometimes by a large margin.

Collectively, these transfer learning results show that embeddings do not generalise re-
liably to other variables.
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Figure 7: Transfer learning analysis.

3.4.2 Learning from text output

Given the poor performance of the simple transfer learning approaches, we refine our
method to exploit information about the variable we predict (vtest), even without access
to ground truth values. Concretely, we use the text outputs of the LLM as noisy or biased

labels of the variable of interest in the training set (
txt
y vtest). For the remaining variables

we use the ground truth labels, as above. Formally, let y†vi :=

{
yvi, v ̸= vtest
txt
y vi, v = vtest

and the

training set be { (xvi, y†vi) : v ∈ V, i = 1, . . . , nv }. The test set, as before, is denoted
as {(yvi, Evi) : v = vtest, i = 1, ..., n}. Even though the text labels are often inaccurate,
they might provide enough information for the model to learn from the embeddings of
the specific prompt of vtest.

We use the same neural network set-up as above. The right panel of Figure 7 compares
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this performance of this transfer learning approach to the text output. This transfer
learning approach almost always outperforms the text output even when the text output
itself is accurate, on average by 7.2 percentage points. This is an important finding.
We can extract knowledge about a specific economic or financial variable from LLM
embeddings without any labelled instances of that variable. The result is robust to
the choice of the hyperparameters of the neural network and we observe qualitatively
similar, but slightly inferior performance, when using a linear model instead of the neural
network.

4 Leveraging LLM embeddings for imputation and super-resolution

4.1 Imputation

Our analyses have established that LLMs have rich knowledge about entities such as
regions and firms. Here we test whether this knowledge can be exploited to improve
the imputation of missing values, a common challenge in economic modelling. As in
Section 3, our approach does not assume the model has memorised the exact statistic
to be imputed or that it can be recovered by prompting. Instead, we use the model’s
embeddings as features, leveraging their generalised knowledge of entities. This makes
the method applicable when the ground-truth statistic has not previously been produced
or reported for certain entities and therefore can only be estimated.

To test whether embeddings can improve imputation accuracy, we compare two impu-
tation strategies on our five datasets. The baseline strategy estimates imputed values
using only the K numeric features (e.g. population and unemployment rate) in the
dataset. The embedding approach extends the feature matrix by appending the first c
PCA components of the embeddings.

To obtain embeddings for the entities, we use generic prompts (see Section 2.2), which
only contain the name of the entity (e.g. region or firm) and the year. Although some
of our datasets contain missing values, we do not impute them for evaluation because
the true values are unknown, precluding accuracy assessment. Instead, we simulate
missingness by randomly masking observed entries.

Our approach to introduce missing values is as follows: Given a dataset with N obser-
vations and K variables, all variables are transformed as described in Section 2.1 before
they are normalised (mean of zero, standard deviation of 1). First, we sub-sample k
features, for each of which we randomly mask p% of its values, creating the incomplete
data Dmiss. We then impute the missing values in Dmiss using imputation algorithm
m.

We test three imputation methods m: using a low-rank Gaussian copula model (Zhao
and Udell, 2020) and iterative multivariate imputation using (i) Bayesian Ridge regres-
sion and (ii) random forest (Wilson, 2020). We assess the accuracy of the imputation
with the mean absolute error (MAE) between the ground truth and the reconstructed
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tures in the imputation method.

values.
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Regional level
Region lower higher

US 3142 counties 51 states
EU (NUTS3) 1165 NUTS-3 244 EU NUTS-2
Germany 401 districts 38 gov. districts

Table 3: Regional levels of super-resolution datasets

For each imputation method, we conduct a large array of experiments to ensure robust-
ness of our results. Specifically, we consider all possible combinations of the parameter
settings k ∈ {1, 2, 5}, p ∈ {0.1, 0.25, 0.5}. To obtain stable results, we replicate the ex-
periments for each parameter combination 25 times, randomly choosing the instances
and features which are imputed. As embedding features, we use the first c = 25 PCA
components of the 25th layer of Llama 3 8B-Instruct.

Figure 8 presents the results across all five datasets and parameter settings m, k, and p.
The embedding strategy consistently outperforms the baseline strategy. The improve-
ment is particularly notable in some datasets. For instance, in the US counties dataset,
the embedding strategy reduces the mean error by 14% on average across parameter
settings.

4.2 Super-resolution

We define super-resolution as the estimation of statistics at a lower geographical level
using information available at a higher level when data for the lower level are unavailable
or unreliable. Like imputation, this task has high practical relevance. Many economic
indicators are published only at higher administrative levels, despite systematic sub-
regional heterogeneity that we may wish to estimate. LME, exploiting an LLM’s gener-
alised knowledge about regions, could provide accurate estimates in this situation. For
evaluation, however, lower-level ground truth is required, which is why we test our super-
resolution approach only on data for which lower-level statistics are reported.

We approach the super-resolution task by training LME on a higher regional level (e.g.
unemployment rate of US states) to obtain estimates at the lower regional level (e.g.
unemployment rate of US counties). We use the completion prompt for both geographical
levels. We test this approach on three of our datasets (US, EU, Germany) for which we
were able to find data on two regional levels, as shown in Table 3.

We compare this super-resolution approach with the text output at the lower level and
with a naive method, which projects higher-level region values onto the lower level. For
example, under the naive method, the unemployment rate of all counties in Alabama is
set equal to the unemployment rate reported for the state of Alabama. Figure 9 presents
the results, ordering the variables by decreasing performance of the text output.

The super-resolution approach performs well, surpassing the text output on most vari-
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Figure 9: Super-resolution analysis.

ables. A notable outlier is population, where the super-resolution performs worse than
random. The naive approach performs well on many of the variables in Germany but
falls behind the other two approaches on the US data. Given the small training sam-
ple size, in particular for the US and Germany (51 and 38 observations at the higher
geographical level, respectively), the performance of the super-resolution approach is
impressive. Super-resolution is a particular transfer learning approach and thus sup-
ports our previous finding (Section 3.4) that the embeddings can be used for accurate
estimation outside the domain of the training set.

5 Conclusion

We have shown that LLMs know more than they say. A linear model trained on the
LLM’s hidden states of only a few dozen labelled samples often outperforms the LLM’s
text output in the estimation of statistics – in particular when the target variable is
a less common statistic. A key contribution of our work is the transfer learning ap-
proach which shows that we can estimate target variables more accurately than the text
output without any labelled data on that target variable. Finally, we provide robust
evidence that the hidden states can be used for data processing tasks. In particular,
adding a low-rank representation of the hidden states to the feature matrix consistently
improves the performance of standard imputation approaches in all of our datasets. Our
super-resolution results show that, in most cases, we can beat the text output in esti-
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mating statistics on a lower geographical level by learning from the higher geographical
level.

We considered several LLMs with 1 to 70 billion parameters and show that our result that
LLMs know more than they say holds across all of them, including a reasoning model
that uses extensive test-time compute. We leave it for future work to test whether this
finding also holds for the largest and most accurate open-source models such as Llama 3
405B or DeepSeek V3 with 671 billion parameters. In this study we exclusively worked
with public data sources; it would be interesting to examine the extent to which our
results hold for proprietary datasets, which are less likely to be observed in the training
corpus of open-source LLMs. Finally, future research could investigate how useful the
hidden states representing firms or geographic entities can be for other data processing
tasks, such as outlier detection.
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Appendix

A Datasets

A.1 US counties

The data on US counties for the year 2019 is one of our two main datasets and we
used a variety of sources to assemble it. We obtained income and GDP data from the
website of the Bureau of Economic Analysis10. The unemployment data was sourced
from the Economic Research Service of the US Department of Agriculture11. Life ex-
pectancy data is provided by the Institute for Health Metrics and Evaluation in the
Global Health Data Exchange database. We obtained mortgage delinquency rates from
the Consumer Financial Protection Bureau.12 Data on the number of businesses was
downloaded from the County Business Patterns Tables from the United States Census
Bureau.13 Information on the median rent is available from the website of the Office
of Policy Development and Research.14 The remaining variables we use come from the
R package usdata (Çetinkaya Rundel et al., 2021) which lists the US Census and the
American Community Survey as sources.

A.2 UK regions

We gathered data for the year 2019 for the 374 local authority districts (LADs) in the
United Kingdom. Most variables were sourced from the Office for National Statistics
(ONS) using API access via the R package onsr (Vasilopoulos, 2023). Some series are
not directly accessible via API and were downloaded from the official websites of the
ONS, Northern Ireland Statistics and Research Agency (NISRA) and the Scottish and
Welsh government websites.

A.3 EU regions

All the EU series for the year 2019 are collected from Eurostat, an official database of
the European Union. We access the series at the NUTS2 and NUTS3 levels via API
calls using the R package eurostat (Lahti et al., 2017, 2023). Note that fewer series are
available on the NUTS3 level.

A.4 German districts

All series for the year 2019 are downloaded directly from the Regionalatlas Deutschland15

by the Federal Statistical Office of Germany.

10https://www.bea.gov/data
11https://www.ers.usda.gov/data-products/county-level-data-sets
12https://www.consumerfinance.gov/data-research/mortgage-performance-trends/

download-the-data
13https://www.census.gov/programs-surveys/cbp/data/tables.html
14https://www.huduser.gov/portal/datasets/50per.html
15https://regionalatlas.statistikportal.de/
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A.5 US listed firms

We collected financial information as of the end of 202216, including balance sheet,
income and share price data, of US listed firms using the Yahoo Finance17 free API
access. We excluded values on the variables return on revenue and return on equity when
firms have negative values on stockholders’ equity or total revenue, respectively.

B Methodology

B.1 Computational requirements

We used an NVIDIA Tesla V100 with 16 GB of video memory to generate the LLM’s em-
beddings and generate text. With 16-bit (fp16) parameters, this memory was sufficient
for all models except Llama 70B variant. Using low-priority virtual machines, compute
costs were under US $0.80 per hour for the GPU. Our baseline Llama 3 8B produced
embeddings for a query in 0.1 seconds. We also tested the speed of a quantised version
of Llama 3 8B running locally on an AMD Ryzen 7 3700X CPU. This required 0.9
seconds per query.

B.2 Prompting

In addition to the baseline completion prompting strategy (see Section 2.2), we also
tested three alternative strategies. First, we apply the standard prompting template that
is provided via the apply chat template function in the Transformers package (Wolf
et al., 2020), referred to as question-answer prompting in this paper. For example, What
was the unemployment rate in Orange County, California in 2019? This led to a lower
response rate for US listed firms, with the model occasionally refusing to give an answer.
Second, we test 5-shot prompting, where we provide 5 randomly chosen Q&A pairs to
the model to learn from. Finally, we use chain-of-thought prompting, adding the phrase
“think carefully before giving an answer” to the system prompt. The system prompts
for the different prompting strategies are shown in Table AI.

Table AII indicates the response rates and Figure AI compares the text output’s per-
formance of different prompting strategies. On average, the completion strategy has the
highest response rate and performs best.

Variable Completion Chain-of-
thought

Few-shot Q&A

US counties

GDP per capita (in $) 1.00 1.00 0.99 1.00
life expectancy at birth 1.00 1.00 1.00 1.00
median monthly two-bedroom rent (in $) 1.00 1.00 0.98 1.00
personal income per capita (in $) 1.00 1.00 0.99 1.00

16We could not access data from 2019, as we do for the other datasets, because the free API access is
limited to the most recent years.

17https://finance.yahoo.com/
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population 1.00 1.00 1.00 1.00
unemployment rate 1.00 0.99 0.99 1.00
number of business establishments per 100,000
people

1.00 1.00 1.00 1.00

percentage change in population compared to
the previous year

1.00 1.00 0.98 1.00

proportion of mortgages being 90 or more days
delinquent

1.00 0.99 0.20 1.00

US listed firms

cost-to-revenue ratio 1.00 0.97 0.69 0.83
debt-to-equity ratio 1.00 0.96 0.99 0.79
market capitalization 1.00 0.94 0.99 0.97
price-earnings ratio 1.00 0.88 0.99 0.91
price-to-book ratio 1.00 0.95 0.99 0.92
return on assets 1.00 0.88 0.99 0.96
return on equity 1.00 0.92 0.82 0.88
return on revenue 1.00 0.98 0.84 0.91
total assets 1.00 0.98 0.99 0.96

Table AII: Response rate when using different prompting strategies
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Figure AI: Performance of text output when using different prompting strategies.

B.3 Extraction of numeric estimates from text output

Extracting numeric values from text outputs of smaller, open-source LLMs is challeng-
ing due to inconsistencies in the response structure and the numerical representation.
We develop a rich extraction function with regular expressions. Firstly, we remove date
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Prompt type System prompt

Completion prompt You are a helpful assistant.
Question-answer prompt You are a helpful assistant. If you do not know the

answer to the question, provide your best estimate.
Answer shortly like this. ’My answer: {number}

5-shot prompt You are a helpful assistant. Answer the question. Use
the format provided in the examples.

Chain-of-thought You are a helpful assistant. If you do not know the
answer to the question, provide your best estimate.
Think carefully before giving an answer. Once you
have the answer just state it like this. ’My final an-
swer: {number}’.

Table AI: System prompts

strings (as these also contain numbers) and format numeric values by removing digit
group separators before we convert answers into consistent units for the different vari-
ables. Additionally, with Q&A prompting, LLMs typically provide the answer first and
then offer an explanation. In contrast, for other strategies, LLMs tend to explain first
and return the answer at the end. Therefore, based on the prompting strategy, we apply
an additional conditional statement to select either the first or the last numeric value as
the final prediction.
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C Additional results

Spearman Pearson
Variable Transfor- LME Text LME Text

mation

US firms
return on assets cubic 0.69 (0.69-0.70) 0.45 0.76 (0.75-0.76) 0.55
return on revenue cubic 0.60 (0.60-0.61) 0.48 0.66 (0.66-0.67) 0.54
market capitalization log 0.91 (0.91-0.91) 0.83 0.91 (0.91-0.91) 0.50
return on equity cubic 0.67 (0.66-0.67) 0.44 0.68 (0.68-0.68) 0.50
total assets log 0.94 (0.93-0.94) 0.81 0.92 (0.92-0.92) 0.48
price-earnings ratio cubic 0.50 (0.49-0.51) 0.37 0.46 (0.45-0.47) 0.21
price-to-book ratio cubic 0.28 (0.26-0.29) 0.39 0.14 (0.11-0.15) 0.12
debt-to-equity ratio cubic 0.37 (0.36-0.38) 0.32 0.18 (0.15-0.19) 0.08
cost-to-revenue ratio log 0.60 (0.59-0.62) -0.03 0.48 (0.46-0.49) 0.02

US counties
population log 0.87 (0.86-0.87) 0.90 0.89 (0.88-0.89) 0.91
life expectancy at birth no 0.75 (0.74-0.76) 0.71 0.74 (0.73-0.74) 0.69
unemployment rate no 0.63 (0.60-0.67) 0.65 0.63 (0.60-0.67) 0.64
median monthly two-bedroom rent (in $) log 0.75 (0.74-0.75) 0.60 0.85 (0.84-0.85) 0.63
personal income per capita (in $) no 0.73 (0.70-0.73) 0.61 0.72 (0.71-0.73) 0.63
GDP per capita (in $) log 0.60 (0.59-0.62) 0.46 0.56 (0.53-0.57) 0.42
proportion of mortgages being 90 or more days
delinquent

no 0.70 (0.66-0.72) 0.41 0.69 (0.65-0.71) 0.41

percentage change in population compared to
the previous year

no 0.51 (0.50-0.52) 0.41 0.48 (0.47-0.49) 0.38

number of business establishments per 100,000
people

log 0.69 (0.68-0.70) 0.03 0.68 (0.67-0.69) 0.04

UK districts
average house price (in £) no 0.94 (0.91-0.96) 0.94 0.89 (0.86-0.92) 0.93
population log 0.85 (0.84-0.86) 0.89 0.85 (0.81-0.86) 0.91
median age no 0.89 (0.88-0.91) 0.85 0.89 (0.88-0.91) 0.82
percentage of the population that live in in-
come deprivation

no 0.87 (0.85-0.88) 0.85 0.86 (0.84-0.88) 0.81

median annual gross pay (in £) no 0.77 (0.76-0.80) 0.63 0.83 (0.81-0.84) 0.72
life expectancy for females at birth no 0.80 (0.76-0.82) 0.70 0.76 (0.70-0.81) 0.70
unemployment rate no 0.75 (0.70-0.78) 0.70 0.73 (0.67-0.76) 0.68
GDP per capita (in £) log 0.63 (0.59-0.69) 0.48 0.64 (0.58-0.69) 0.66

German districts
number of hospital beds per 1,000 inhabitants no 0.53 (0.51-0.55) 0.52 (0.49-0.55) 0.0018

population density (per square km) log 0.90 (0.88-0.90) 0.83 0.91 (0.90-0.92) 0.82
unemployment rate (%) no 0.83 (0.82-0.84) 0.75 0.81 (0.79-0.83) 0.74
disposable income per capita (in N) no 0.77 (0.76-0.78) 0.63 0.76 (0.74-0.78) 0.60
average age of the population no 0.82 (0.81-0.84) 0.61 0.84 (0.83-0.85) 0.57
GDP per capita (in N) log 0.69 (0.66-0.70) 0.42 0.73 (0.70-0.74) 0.43
percentage change in population compared to
the previous year

no 0.57 (0.54-0.60) 0.48 0.57 (0.52-0.61) 0.42

number of business registrations per 10,000 in-
habitants

no 0.63 (0.57-0.66) 0.29 0.66 (0.59-0.69) 0.36

Continued on next page

18With constant responses across districts, the sample correlation is not defined. We record perfor-
mance as 0.
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Spearman Pearson
Variable Transfor- LME Text LME Text

mation

number of filed corporate insolvencies per
10,000 taxable companies

no 0.49 (0.45-0.52) 0.32 0.59 (0.56-0.62) 0.34

percentage of school leavers with a general uni-
versity entrance qualification (%)

no 0.65 (0.63-0.67) 0.07 0.63 (0.60-0.65) 0.13

number of government employees per 1,000 in-
habitants

no 0.63 (0.62-0.65) 0.11 0.63 (0.61-0.65) 0.08

number of completed housing units per 1,000
inhabitants

no 0.47 (0.41-0.52) -0.10 0.42 (0.35-0.46) 0.04

total investments per employee (in N) no 0.12 (0.04-0.18) -0.05 0.07 (-0.01-0.13) -0.09

EU (NUTS2)
life expectancy at birth no 0.70 (0.54-0.79) 0.85 0.86 (0.82-0.89) 0.91
unemployment rate no 0.75 (0.52-0.82) 0.88 0.78 (0.48-0.85) 0.87
net disposable household income (in N) no 0.92 (0.89-0.94) 0.81 0.94 (0.91-0.95) 0.82
population log 0.73 (0.69-0.77) 0.72 0.75 (0.71-0.81) 0.68
risk-of-poverty rate no 0.55 (0.35-0.61) 0.51 0.47 (0.34-0.59) 0.50
GDP per capita (in N) log 0.75 (0.65-0.79) 0.50 0.76 (0.67-0.80) 0.46
number of burglaries per hundred thousand in-
habitants

no 0.55 (0.27-0.62) -0.43 0.47 (0.28-0.56) -0.01

Table AIII: Cross-validation performance of the baseline LLM comparing LME with
text output. For each performance metric, the best-performing approach is shown in
bold. LME performance is based on 25 iterations of 5-fold cross-validation. Numbers
before the parentheses indicate the mean; numbers in parentheses show the minimum
and maximum performance across the 25 iterations.
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Figure AII: Cross-validation performance using Pearson correlation as the performance
metric.
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Figure AIII: Performance of the base model on the US counties dataset as a function of
the number of PCA components. LME’s mean performance across 25 cross-validation
iterations is shown as a line; the shaded band indicates the minimum–maximum range
across iterations.
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Figure AIV: Performance of the base model on the US-firms dataset as a function of
the number of PCA components. LME’s mean performance across 25 cross-validation
iterations is shown as a line; the shaded band indicates the minimum–maximum range
across iterations.
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Figure AV: Comparing LME performance when trained on different layers.
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Figure AVI: Comparison of performance between LME and text output within states
with at least 50 counties.
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