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1. Introduction 

 

On March 8 2023, Silicon Valley Bank (SVB) experienced the most classic text-book example 

of a bank run which resulted in total deposit withdrawals of $42 billion in one single day, 

almost 25% of its funding structure. To offset this liquidity needs and repay its depositor base, 

SVB sold $21 billion of US Treasury bills (T-bills) and thus realized $1.8 billion of marked-

to-market (MtM) losses which further triggered a loss of confidence in the bank. This caused 

a rating downgrade which brought an additional $100 billion of deposit withdrawals scheduled 

for the day after. SVB could not pay these obligations and was declared insolvent on March 10 

2023 (FED, 2023). SVB didn’t manage the interest rate risk associated with its securities 

holdings, heavily concentrated in long-term US Treasury bonds. The bank had a concentrated 

business model - not only on the asset side - but also on the liability side with its funding 

structure being strongly reliant on uninsured deposits from venture capital firms.  

SVB’s collapse was not caused by any single risk factor, but rather by the interaction of several. 

While funding concentration or interest rate exposure alone would not have triggered its 

default—especially since its assets were mainly liquid T-bonds—the combination of solvency 

and liquidity risks rapidly escalated the situation. This dynamic turned a stable bank into an 

insolvent one within days during the 2023 US Regional Banking Crisis, which also saw the 

failures of Signature Bank and First Republic Bank. The resulting market uncertainty blurred 

distinctions between banks, leading to widespread “news” and “market contagion” that affected 

even major US and global banks. In the end, in March 2023, Credit Suisse’s default highlighted 

that even a Global Systemically Important Bank (GSIB) could fail despite central bank support. 

Although still solvent, fears over its profitability led to significant client withdrawals—around 

10% of its assets. To prevent broader market disruption, UBS acquired Credit Suisse under 

favourable terms on March 19. This event, along with others, demonstrated that funding shocks 

and fire-sale dynamics can affect even high-quality assets like government bonds. These shocks 

now unfold faster than before, acting as both triggers and amplifiers of solvency crises.  

Against this background, this work aims to develop a framework for assessing, monitoring, 

and testing banking stability as a joint assessment of both solvency and liquidity risks and their 

interactions. We rely on a stochastic microstructural accounting-based network methodology 

to model granularly the complex set of banks’ relationships on an exposure level maintaining 

a stock-flow consistent approach at a bank balance sheet level on the asset side as well as on 

the liability side (Montagna et al., 2020; Sydow et al., 2024; Covi and Huser, 2024).  Our 

framework extends the existing approach by jointly modelling shocks on the asset and liability 
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side simultaneously, which captures solvency and liquidity risks and their correlations. 

Moreover, we include multiple financial contagion channels after the initial shock. Thus, we 

model the interaction between solvency and liquidity risk in a correlated manner. Also, we 

calibrate banks’ cost of funding as a function of their solvency position and the level of market 

distress endogenously in the model.  

Given this detailed representation of the banking system and accounting relationships which 

are fully endogenized, we can use this framework to test counterfactual hypotheses and 

scenarios and assess in comparative terms the marginal impact of those changes as deviations 

to baseline estimates. To achieve this, we compute a distribution of outcome variables which 

capture aggregate vulnerabilities at a system level, respectively a profit and loss distribution, 

funding outflow distribution, as well as regulatory ratios distribution which combine 

information from the two previous distributions and banks’ balance sheet characteristics. 

Accordingly, we derive three main risk metrics, respectively Conditional Capital at Risk 

(CCaR) representing the Value at Risk of banks’ profit and loss distribution, Conditional 

Liquidity at Risk (CLaR) representing the Value at Risk of banks’ funding outflow distribution, 

and third the 1-Year average bank default probability for the banking system, our key outcome 

variable tracking financial (in)stability in banking.  

We construct the most comprehensive supervisory granular banking exposure dataset covering 

both the asset and liability sides of the seven major UK banks. We then calibrate and test the 

methodology on a quarterly frequency over a 10-year period (2015q1-2024q1) which is 

representative of relevant stress episodes, regulatory reforms as well as policy interventions.  

We obtain a rich set of results. We quantify that the 1-year average bank default probability for 

the UK banking system stands at 0.3% as of 2024q1, down from the peak of 1.2% reached 

during the pandemic period (2020q1), and below the historical 10-year average of 0.7% (2015-

2024). This estimate seems to be aligned with equity-based market estimates during normal 

times, although some differences arise during stress periods like the Covid-19 pandemic, 

highlighting an overshooting tendency of market estimates relative to our microstructural 

accounting-based estimates.  

Second, we find that banks most commonly default due to simultaneous breach of both capital 

and leverage ratios, with some heterogenous effects across time. The liquidity constraint seems 

to be the least binding in this period of analysis, given the high level of banks’ cash reserves.    

Third, we quantify and provide evidence on the effectiveness of the dividend restriction crisis 

tool implemented in early 2020 in curbing the average bank default probability, showcasing 
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the key role played in offsetting potential additional feedback and amplification mechanisms. 

This result holds when we test this policy on a GFC-type stress scenario. 

Fourth, from a liquidity angle, we find that Conditional Liquidity at Risk (CLaR99) tracking 

the size of funding shocks at the 99th percentile decreased from 10% to 6% (share of total 

withdrawable deposits) between 2015 and 2024, roughly 20-30% of the LCR 30-days liquidity 

outflows assumption. Nonetheless, we find that CLaR99 estimates conditional to an adverse 

stress scenario (GFC-type event) may increase up to the severity of liquidity outflows assumed 

in the LCR (£850 billion), thereby corroborating its calibration under stress conditions.  

From a solvency angle, we find that the most important channel of potential loss propagation 

between 2015 and 2024 is direct credit and market risk losses which average around £87 billion 

[of CCaR99], representing roughly 69% of total CCaR99 variation. Next, we find that the fire-

sale channel is the second most relevant channel at play, with an average impact at 99th 

percentile of £23 billion of losses (18% of total CCarR99 variation). The impact varies 

materially over time (and across banks) between 15% and 28% depending (among other 

factors) on banks’ security portfolio composition.  

The reminder of the paper is structured as follows. Section 2 provides a summary of the main 

contributions of the paper in relation to the existing literature. Section 3 covers the 

methodological framework. Section 4 covers the data section and model calibration. Section 5 

presents and discuss the model outputs and findings. Section 6 provides a macroprudential 

impact assessment of policy interventions gauging their effectiveness. The last section 

concludes.  

2. Literature Review 

Our approach builds on the model by Elsinger et al. (2006), as it allows us to capture the 

network of mutual credit exposures among banks which are influenced by shared 

macroeconomic conditions. This banking system-wide perspective reveals vulnerabilities that 

may be overlooked when supervisors focus only on individual institutions. As such, our work 

contributes in two key ways: first, by improving the methodology used to assess systemic risk; 

and second, by generating new insights that help evaluate the effectiveness of prudential 

regulation. Importantly, our results provide a risk assessment at the level of the entire banking 

system (macroprudential), rather than just individual banks (microprudential).  

2.1 Methodological Contribution 

We follow this stream of literature (Montagna et al., 2020; Covi et al., 2022, 2024; and Sydow 

et al., 2024) and model banks’ credit, market and liquidity risks as a function of banks’ asset 
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and funding networks of exposures. On top of that we add feedback and amplification 

mechanisms as a function of banks’ individual responses to shocks conditional to a set of 

balance sheet constraints. Our holistic approach contributes to the measurement and assessment 

of financial stability risks and to the calibration of prudential banking regulation via an 

integrated solvency-liquidity macroprudential stress test framework (Aikman et al., 2023)1. We 

start by modelling portfolio credit risk on an obligor-basis relying on the widely used Gaussian 

copula model described in Glasserman (2004; 2005) consistently with Covi et al. (2022; 2024) 

and Sydow et al. (2024). In this respect, this element allows us to model the dependence 

structure of obligor defaults and thus capture credit and traded risks stemming from correlated 

portfolio of loan and security exposures - the main source of systemic risk according to Elsinger 

et al. (2006). We then augment the simulation engine with a bank-specific net operating income 

component which is modelled as an inverse function of the severity of the realized loss in each 

simulation. This is consistent with findings from Bolt et al. (2012), and Albertazzi and 

Gambacorta (2009), and the approach derived in Covi and Huser (2024). This feature is often 

overlooked in most of the financial contagion literature, though it has important mitigating 

effects given net operating income may absorb shocks to banks’ capital base via the retained 

earnings channel.  

Next, we expand the simulation engine to encompass also funding shocks stemming from 

banks’ correlated portfolios of deposits and repo activities. Hence, we model jointly and 

consistently shocks on the asset and liability sides of banks, thereby capturing solvency and 

liquidity risks and their potential correlation due to the overlapping set of counterparties. To 

the best of our knowledge, this is the first model that endogenize liquidity risk via a granular 

network of funding sources consistently with the network of obligors on the asset side.  

In terms of feedback and amplification mechanisms, we combine multiple financial contagion 

channels and model the interaction between solvency and liquidity risks in a correlated manner, 

thereby making it mutually reinforcing, and so capture non-linear dynamics as discussed in the 

relevant literature (Cont et al., 2020; Hałaj, 2020; Aldasoro and Faia, 2016). Specifically, the 

methodology incorporates multiple channels—bank-runs, funding costs, fire-sales, and 

interbank contagion. A key novelty is the endogenous and empirical modelling of bank-runs 

and funding costs based on banks’ characteristics and market distress. Bank-runs are triggered 

by breaches in capital and leverage buffers (Covi et al., 2019; 2021; Sydow et al. 2024), 

 
1 BCBS (2015) advises that integrated tests are desirable opposed to a stand-alone test, as the interaction between 

solvency and liquidity is often material. 
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extending beyond interbank withdrawals to all short-term funding from banks and financial 

corporates. After estimating funding outflows, we derive banks’ total funding demand and the 

supply of secured and unsecured repo funding in the Sterling market, calculating the resulting 

additional funding costs. If unmet, these shocks may lead to fire-sales. This approach extends 

Cont et al. (2020) by incorporating system-wide contagion and endogenous funding dynamics 

at both the bank and system level. The methodological contribution is also related to the 

modelling and calibration of banks’ cost of funding as a function of a bank’s solvency position 

and the level of market distress. This is a major difference compared to the literature since the 

interest rate spread is endogenously derived (Dent et al., 2021; Babihuga and Spaltro, 2014; 

Korsgaard, 2021; Hasan et al., 2016; Arnould et al., 2022). Overall, in the literature there are 

clear evidence that, when controlling for bank-specific characteristics, a deteriorated solvency 

position negatively affects funding costs, with the relationship being non-linear. Although 

theory recognizes the interaction between the two risks (Rochet and Vives, 2004; Diamond and 

Rajan, 2005), integrating the two in stress testing has been lacking, both in empirical research 

(Cont et al., 2020), and in central bank implementation (Anderson et al., 2018). In this respect, 

we follow Hałaj (2018, 2020) who develops a system-wide ABM (agent-based model) model 

to capture liquidity and solvency risk interactions.  

Next, we model fire-sale spillovers taking place via indirect price-mediated contagion as key 

feedback and amplification channel (Shleifer and Vishny, 2011; Greenwood et al., 2015; 

Caccioli et al. 2015, Cont and Schaanning, 2019; Duarte and Eisenbach, 2021; Caccioli et al. 

2024; Sydow et al., 2024; Covi et al. 2024). In this respect, we rely on the existing literature 

and design a fire-sale mechanism whose deleveraging process is a function of both banks’ 

leverage and liquidity needs (binding constraints) and affects the risk-weighted capital 

constraint. Thus, we construct a leverage targeting constraint which is bank-specific and 

adjusted to account for the bank-specific leverage volatility preference. We implement this 

feature as acknowledged by Caccioli et al. (2014), and Cont and Schaanning (2019)2. 

Moreover, with the same rationale in mind, we also model deleveraging needs according to a 

leverage adjustment speed parameter whose calibration is based on Duarte and Eisenbach 

(2021). This parameter captures the positive relationship between banks’ deleveraging needs 

and realized asset sales.  In this respect, depending on the severity of the fire-sale event, a bank 

 
2 Using a strict target-leverage constraint may push banks to be oversensitive to the binding constraint and leads 

to an overestimation of fire-sales spillovers when relatively small shocks hit banks’ balance sheet. Thanks to this 

feature, banks are assumed to deleverage only when shocks push a bank’s leverage above one-standard deviation 

of its historical leverage. 
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is assumed to adjust the speed at which it deleverages to spread the burden over time and in 

turn also reduce liquidation costs3. Complementary, banks are also assumed to deleverage due 

to a cash buffer target, which is bank-specific, and it is adjusted to account for bank-specific 

cash volatility preference. Hence, banks may deleverage to repay funding obligations, and to 

hold enough cash to withstand potential future liquidity shocks. In the end, we move away from 

a linear price-impact function and adopt a nonlinear approach leveraging upon Fukker et al. 

(2022)’s estimates for historical price dynamics4. In this respect, we show that banks’ 

deleveraging process via fire sales tend to amplify shocks on average, but can also dampen 

them, and improve banks’ regulatory ratios effectively. This result is consistent with Shin and 

White (2020), and Duarte and Eisenbach (2021) who highlight that banks can improve their 

post-shock leverage ratio depending on banks’ starting conditions such as such as asset size, 

initial leverage, and asset holdings.  

At the outset of the financial contagion literature, the focus was placed on the propagation of 

losses via cascade defaults and domino effects in the interbank market (Eisenberg and Noe, 

2001). Although this contagion channel has been very predominant within the financial 

contagion literature, its relevance has decreased over time (Bardoscia et al., 2017). 

Furthermore, as noted by Glasserman and Young (2016), following the introduction of large 

exposure limits and collateral requirements, the likelihood of direct contagion through 

counterparty exposures has diminished in the banking system.  

Beyond this set of methodological enhancements, we want to highlight few other important 

contributions to the literature. We design and calibrate a comprehensive set of regulatory 

thresholds triggering banks’ failures and banks’ management actions that the literature has 

acknowledged being lacking (Upper, 2011), and crucial to capture the unfolding of systemic 

stress events (Farmer et al., 2020; Aymanns et al., 2018; Lo, 2017; Armour et al., 2016).  

There exist studies that rely on game theory, (Hałaj and Priazhkina,2021), or heuristics (Covi 

et al., 2019) to derive banks’ responses conditional to imperfect information on other banks’ 

actions and balance sheet positions. The former approach is beyond the scope of the paper, and 

we adopt a more heuristic-based approach triggering bank’ management actions.  

Overall, most of the literature focuses on modelling one financial contagion channel at  time 

and used as trigger for the model dynamics a set of exogenous shocks which are not rooted into 

 
3 This assumption implies that banks won’t be able to perfectly restore the initial target leverage constraint in the 

short-term. 
4 This non-linear calibration allows us to avoid over (under) estimation of fire-sale spillovers when small (large) 

size shock hit banks’ balance sheet to achieve a more accurate estimate of the price impact and price mediated 

contagion as shown in Covi and Huser (2024). 
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an empirically calibrated probability distribution modelling risks stemming from banks’ actual 

set of obligors and their intrinsic risks (actual borrowers’ probability of default). Hence results 

are often abstracted from the actual features of the system, and do not have policy relevance. 

Contrary, our approach brings implications for the derived system equilibrium which, instead 

is a function of banks’ heterogeneous starting balance sheet positions and overlapping and 

correlated portfolios of exposures via-a-vis the real economic and financial sector. Overall, the 

single-channel approach helps in studying and modelling comprehensively the features and 

dynamics of one risk dimension by isolating the effects. Nonetheless, it overlooks the 

importance of modelling the interactions and amplification effects across channels, thereby 

losing the complexity of the system’s dynamics that may materialize under certain conditions 

(Eisenberg and Noe, 2001, Gai and Kapadia, 2010, Glasserman and Young, 2015; Caccioli et 

al., 2014, Cont and Schaanning, 2019). Very few papers aim to bridge this gap and, in this 

respect, our paper contributes to the stream of literature which deal with uncertainty and 

complexity as key modelling dimensions (Elsinger et al., 2006; Montagna et al., 2020; Covi et 

al., 2022, 2024; and Sydow et al., 2024).  

2.2 Result Contribution 

First, we provide estimates for the quantification of banks’ default probabilities relying on a 

microstructural network-based methodology. Among the relevant papers of the microstructural 

and network literature, the only few examples to date, although with some differences in terms 

of methodology and data, are Elsinger et al., (2006) and Montagna et al. (2020), which provide 

respectively a systemic risk assessment for the Austrian banking sector, and the euro area 

banking sector. Contrary, in the market-based literature (Nagel and Purnanandam (2019), 

Brownlees and Engle, 2017; Adrian and Brunnermeier, 2016; Acharya et al., 2014), several 

models have achieved the quantification of financial institutions’ probability of default. This 

substantial difference comes from the more complex, yet more granular approach of 

microstructural models that require confidential exposure data for their calibration, which often 

lacks a long time series dimension5. Our paper attempts to fill this gap since we back-test our 

model over a 10-year period with quarterly data and confront its output with market-based 

 
5 Microstructural models provide a more granular view since they are based on confidential information. They 

may also be better at identifying the impact of different channels of shock propagation, such as common 

exposures, fire sales or network effects (Gauthier et al., 2014). Nonetheless, they also have drawbacks in terms of 

calibration, model complexity, and replicability given they rely on confidential exposure data. This issue does not 

apply to market-based approaches since they exploit banks’ equity and CDS prices which are available on a daily 

frequency and for more 20 years as of now.  
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approaches6. In this respect, we find that our average baseline PD estimates for the UK banking 

sector without feedback and amplifications tend to be aligned with market-based PD estimates. 

This is true especially in normal times, where estimates are respectively an average of 0.36% 

versus 0.39% during the period of the analysis. The main difference is found during period of 

stress and high market volatility (pandemic period) in which market-based estimates tend to 

overshoot materially our PD estimates even with feedback and amplification mechanisms. 

Overall, we find consistently with Van Oordt (2023) that market-based models tend to be much 

more sensitive to market uncertainty and stock price volatility. On the other side, 

microstructural models tend to be more anchored to structural slow-moving factors such as 

banks’ balance sheet characteristics (capital and leverage ratios) and network of exposures, 

thereby avoiding overshooting. In this respect, we provide estimates for the impact of feedback 

and amplification mechanisms (especially fire sales) on the average bank default probability 

which account for 37% of total contribution (0.26% out of 0.7%), showing that the impact is 

heterogeneous and non-linear over time. This result corroborates findings from previous 

literature. Puhr and Schmitz (2014) calculate approximately 25% of the total loss in the 

solvency stress test stems from the asset fire sales; whereas Schmitz et al. (2019) show that 

incorporating this interaction results in additional 30% reduction of capital ratios.  

Finally, we use the methodology as a policy laboratory in which a macroprudential policy 

assessment is carried out via counterfactual policy exercises as pointed out by Aikman et al. 

(2023), and Greenlaw et al. (2011). We assess the impact of the dividend restriction crisis tool 

(DR) introduced by the Bank of England (and other central banks) in 2020q1 to temporarily 

boost banks’ capital during the pandemic period via the “retained earnings channel”, given in 

periods of market disruption the “bank capital channel” is not a suitable option (Van den 

Heuvel, 2002). We find that this tool and channel was very effective in promptly keeping under 

control the stability of the UK banking system during a severe period of stress. This result 

complements previous findings in the literature (Acosta-Smith et al., 2023, and Dautović et al., 

2023) which show a positive effect on lending, resilience and risk taking by banks. 

Nonetheless, alternative studies (Marsh, 2023; Matyunina and Ongega, 2022) find evidence 

that this tool may deteriorate banks’ market valuation and in turn negatively affect their cost of 

funding, leading to counterproductive effects. We find that without a DR, the average bank 

default probability would have been higher by 32 bps (or 43%) between 2020 and 2021. 

 
6 We rely on banks’ PD estimates estimated with the Eikon Starmine Credit Risk model which relies on a Merton 

model approach and banks’ equity prices. 
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Moreover, the macroprudential effect is remarkable in terms of offsetting potential additional 

feedback and amplification mechanisms, which contribute 18 bps (56%) to the 32 bps increase. 

An equity market-based methodology would bring confounding results given DR breaks the 

negative relationship of CDS spreads and equity prices, turning it into a positive relationship 

in the short-term (lower stock prices and lower CDS spreads), consistently with findings from 

Dautović et al. (2023) and Acosta-Smith et al. (2023). Building upon this stress scenario 

exercise, we show how a macroprudential policy intervention aiming at lifting banks’ capital 

base may contribute to reduce the average bank default probability. Other approaches have 

attempted to perform a calibration assessment of capital buffer requirements (Van Oordt, 2023; 

Coulier and Scalone, 2021), but none of them belong to the microstructural network literature, 

often relying on macro-econometric techniques.   

3. Methodology 

The methodology leverages upon the existing methodological contributions published in the 

stress testing, financial contagion, and network literature and combines them with a two-step 

procedure. Respectively, the first step consists in a stochastic approach modelling asset and 

funding shocks stemming from banks’ counterparty defaults and the actual multiplex network 

of asset and funding exposures. Counterparty defaults are sampled according to a set of actual 

risk parameters (probability of default) which captures the prevailing state of macro-financial 

conditions across countries and sectors (non-financial corporates, non-bank financial 

corporates, credit institutions, governments) in each quarter7. Shocks are also modelled via a 

correlation structure capturing the dependence of shocks across countries and sectors, which 

are then transmitted to banks’ balance sheet via the actual granular exposure network of banks’ 

asset (loan and securities) as well as funding sources (deposits and repos). Asset and funding 

exposures from the household sector are also modelled with aggregated exposure data by 

country to obtain a full coverage of banks’ balance sheet both on the asset and liability side.  

Next, as a second step, we model feedback and amplification mechanisms deterministically as 

a function of banks’ updated balance sheet position (after the transmission of shocks derived 

in step 1), and a set of empirically calibrated bank behavioural responses which are actioned 

according to the breach of bank-specific regulatory constraints (capital, leverage, and liquidity 

requirements) or deviations from historical bank-specific risk tolerance levels in terms of 

leverage ratio and liquidity preferences. This step allows us to capture the macroprudential 

 
7 This set of portfolio risk factors are estimated by banks on a quarterly frequency and submitted as part of 

supervisory COREP C.09 template. 
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system perspective which uncovers spillovers from aggregate risks stemming from the joint-

interaction of banks’ exposures to common shocks and bank-market responses to those shocks, 

which otherwise are invisible to microprudential supervisor as well as to the private bank itself.  

3.1 Modelling Framework 

Figure 1 presents schematically the two building blocks of the methodology. We generate at 

STEP 1A the set of bank-quarter specific shocks on both the asset and liability sides of banks’ 

balance sheet by sampling the default of counterparties banks are exposed to via loan and 

trading (bond and equity) book exposures and on the funding side via deposits and repo 

activities. This is consistent with Covi et al. (2022; 2024) and Sydow et al. (2024) approach. 

Thus, we obtain a simulation-specific (n=10.000) vector of defaulted counterparties for each 

quarter. Given each simulation’s realized severity which is proxied by the amount of banks’ 

exposures at default, we introduce banks’ realized gross profits as inverse function of banks’ 

exposures at default, i.e. the higher the system’s realized stress, the lower banks’ gross returns 

(interests, fee and commissions minus expenses) consistently with findings from Bolt et al., 

(2012) and Albertazzi and Gambacorta (2009).  

Next, in STEP 1B we map the set of shocks according to a stock-flow consistent balance sheet-

based approach and update the set of banks’ balance sheet variables such as CET1 and TIER1 

capital, total assets, risk weighted assets, cash on hands, and the regulatory ratios (CET1 and 

TIER1 capital, leverage, and liquidity ratios). Then we check whether banks have breached 

their regulatory ratios and accordingly we classify banks as viable if none of the constraints 

have been breached, or in distress when banks breach capital, leverage and liquidity buffer 

constraints, or in default8 when they fall below minimum capital, leverage, and liquidity 

requirements. This approach is consistent with the existing literature as discussed in Halaj 

(2020). In the end, we update the network structure on both the asset and liability sides in order 

to account for the defaulted or withdrawn set of exposures. 

This set of bank-specific states (viable, distress, default) is used to trigger banks’ management 

actions as well as the market response, which are modelled deterministically and sequentially 

as part of STEP 2 in the form of feedbacks and amplification mechanisms. These behavioural 

responses and management actions are based on previous findings from the theoretical and 

empirical banking and financial contagion literature and calibrated on actual quarter and bank-

 
8 Defaulted banks can be orderly or disorderly resolved as in Farmer et al. (2020). Orderly resolution (or 

liquidation) of a bank is a contagion-free, meaning that the bank becomes inactive, whereas disorderly includes 

rapid fire-sale (see Kok and Montagna, 2013). We choose the orderly path, as the regulatory body would want to 

minimize the costs of a bank failure. 
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specific balance sheet variables. It follows that the first dynamic response is captured via the 

channel defined as bank-runs, which is triggered when a bank breaches its CET1 capital buffer 

constraint or its leverage ratio distress constraint. In this respect, the market response implies 

that all financial institutions (banks and non-banks) start withdrawing short term funding 

categorized as sight deposits or do not roll-over short-term funding from repo operations, that 

is, they engage in precautionary withdrawals on the interbank market as explained in Davidovic 

et al. (2019), and Arinaminpathy et al. (2012). Overall, we assume that financial institutions 

act to manage their risk and choose not to lend out to stressed banks as shown in Acharya et al. 

(2022). Furthermore, this finding is also corroborated by empirical evidence in Blicke et al. 

(2022) who emphasize that the interbank market precisely identifies which banks will fail, and 

by Iyer and Peydró (2011) who find that banks do not liquidate interbank deposits from an 

average bank, but rather from those that have a high level of exposure to the failing and likely 

to fail ones. Moreover, healthy banks tend to also hoard liquidity as part of their risk aversion, 

meaning that banks observe others’ liquidity hoarding behaviours and become more risk averse 

pushing them to reduce liquidity provision (Benzoni et al., 2015; Guisio et al. 2018).  

Figure 1: Model Flow Diagram 

 
Note: Feedback and amplification mechanisms are modelled deterministically conditional to each bank’s balance 

sheet position derived stochastically at STEP 1.  

Accordingly, we model banks’ liquidity management actions conditional to each bank’s total 

funding needs as the sum of liquidity shocks experienced at STEP 1 and STEP 2 (bank runs). 

We then allow banks to engage in the secured and unsecured Sterling money markets to raise 

cash and in turn satisfy liquidity needs (offset liquidity shocks). In this respect, we model 

endogenously demand for funding and exogenously the supply of secured and unsecured 

funding conditional to the historical market size and to the bank-specific amount of high-

quality liquid assets available to pledge (HQLA). Consistently we also model endogenously 

the cost of funding each bank pays as a function of: i) the central bank main refinancing rate 

2x

1A. Stochastic Shocks

Credit and
Market Risk 

Losses

Gross 
Profits

Funding 
Withdrawals

Feedback and Amplification Mechanisms

1B. Balance Sheet Updates

Default (DF)Distress (DS)Viable

Capital, Leverage and Liquidity Constraints

STEP 1 STEP 2

Bank-Runs | Capital and Leverage DS

Funding Cost | Liquidity

Fire-Sales | Liquidity or Leverage 

Solvency Contagion| Bank DF
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which is a time-varying parameter; ii) a bank-specific spread capturing the deteriorated 

solvency position (rating-based approach); iii) and a market spread capturing the level of stress 

in funding markets. Hence we compute a bank’s total funding costs conditional to a specific 

liquidity stress horizon so as to model solvency-liquidity interactions stemming from liquidity 

shocks to solvency spillovers. The empirical literature have emphasized that a higher leverage 

(Annaert et al., 2010) and higher solvency risk (Pierret, 2014) lead to increased funding costs. 

Once this step is completed, we update the set of indicators tracking the stock and flows of 

banks’ balance sheet variables, and we determine whether banks may have still pending 

funding needs or deleveraging needs. Funding needs may have been only partially satisfied 

given that the supply of secured and unsecured funding is constrained by the Sterling money 

market size and by the limited set of HQLA securities available to pledge, which is a subset of 

the overall portfolio of securities a bank holds. Instead, deleveraging needs may arise due to 

the set of credit and market risk shocks experienced at STEP 1 which may have led to a 

deterioration of a bank’s leverage ratio. In this respect, the management action a bank is 

allowed to take is the sale of securities to satisfy the remaining funding needs and/or to restore 

the initial (target) leverage ratio (Duarte and Eisenbach, 2021; Bindseil, 2013, Van den End, 

2010; Greenwood et al., 2015). The sales of assets take place at a discounted price which is 

derived using a heterogeneous security-specific price impact function whose price dynamics 

are modelled conditional to the asset-specific selling pressure and the market-specific severity 

of the fire-sale event - both features endogenously derived. Hence, we compute price-mediated 

contagion as marked-to-market (MtM) losses experienced by a bank on its holdings and sales 

of securities. This action may lead to a deterioration of a bank’s solvency position via MtM 

losses, though under certain conditions it may also lead to an improvement in the bank’s 

solvency-related regulatory capital and leverage ratios9. Contrary, the sales of assets always 

improve a bank’s liquidity position.  

Banks are assumed to de-leverage according to a targeted leverage ratio and to a leverage 

adjustment speed parameter (Greenwood et al., 2015) applying a pro-rata selling strategy. In 

the end, we update the set of banks’ balance sheet variables, and model solvency contagion as 

credit risk losses stemming from interbank market exposures vis-à-vis the endogenously-

 
9 For instance, keeping everything else equal, the composition of a security portfolio (low versus high share of 

risk assets) may determine whether the outcome results to be positive or negative. The sales of securities of a low-

risk portfolio may not cause enough losses to reduce a bank’s capital base more than the reduction in total assets 

and risk-weighted assets, leading the regulatory ratios to improve.  Contrary a high-risk security portfolio tends 

to be conducive to a deterioration of regulatory ratios. Ceteris paribus in terms of portfolio composition, the overall 

outcome may vary also according to the level of market stress and selling pressure experienced in each simulation 

since the price of sales is determined endogenously by those two parameters.  
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derived set of defaulted banks. We repeat STEP 2 twice given that in our framework we model 

the deleveraging process consistently with a leverage adjustment speed parameter (Duarte and 

Eisenbach, 2021) which assume partial-deleveraging in each loop in order to avoid 

overestimation of fire-sale spillovers.  

3.2 Stochastic Simulations 

The model dynamics are triggered by an initial shock stemming from the defaults of banks’ 

counterparties, respectively non-financial corporations (NFC), non-bank financial institutions 

(NBFI), credit institutions (CI) and governments (GG)10. Banks are exposed to this set of 

institutions on both sides of the balance sheet, respectively by providing loans and holding 

securities issued by these firms, and by obtaining fundings such as sight and term deposits as 

well as repo contracts from other credit institutions, NBFIs and non-financial corporates. In 

this respect, we randomly sample the vector of counterparty defaults using a Gaussian-Copula 

model with counterparty-specific (j) probability of default in period t (𝑃𝐷𝑗,𝑡) as well as a 

dependence structure modelled by a correlation structure for country-sector pairs (Sydow et al. 

2024; Covi et al. 2024). For technical details we refer the reader to these papers and to 

Appendix A. The counterparty-specific probabilities of defaults are time varying and reflect 

changes in macro-financial conditions, whereas the correlation structure is time-invariant 

capturing the historical dependence of macro shocks across country and sector pairs11.  

The stochastic defaults of counterparties lead to loan losses in bank i-s’ portfolios and to market 

losses on their security holdings (𝐿𝑖,𝑛,𝑡) as well as to funding shocks (𝐹𝑖,𝑛,𝑡
1  ) in each scenario 

n and quarter t, given sight deposits are withdrawn to pay default-related obligations and repo 

activities are not rolled over. Hence, the vector of firm defaults captures the relationships 

between correlated asset and liability shocks on banks’ balance sheet.  This correlation depends 

on the degree of portfolio overlapping for both sets of counterparties on the asset and funding 

sides. The only sector for which we don’t rely directly on the sampling method to estimate 

credit risk losses (given the lack of granular exposure data) is the household sector (HH). In 

this regard, we augment the model with loan losses stemming from mortgages and consumer 

credit relying on banks’ aggregated loan amounts by country-sector and asset type. 

Consistently with Sydow et. al. (2024), when we consider an aggregate country-sector 

 
10 Contrary to Sydow et al. (2024), we extend the set of counterparty defaults to all sectors, instead of limiting it 

to NFC and a subset of NBFI.  
11 In Section 4 we provide more details on the calibration of this dependence structure. We highlight at this point 

that we rely on a time-invariant correlation structure instead of a time-variant since it is beyond the scope of this 

paper to model this source of variation. See Covi et al. (2022) for further insights. 
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exposure, we cannot sample individual default events. We rather model HH losses (𝐿𝑖,𝑛,𝑡
𝐻𝐻 ) 

consistently with a country-asset specific impairment rate whose relative severity across 

simulations is scaled according to the realized severity derived in the stochastic loss 

component. Hence, we assume that a higher number of counterparty defaults cause a higher 

stress in the household sector (higher impairment rate) which takes place via the unemployment 

channel. Similarly, we model funding shocks stemming from households’ aggregated sight and 

short-term deposits by country and sector (𝐹𝑖,𝑛,𝑡
𝐻𝐻 ). Last, we introduce a vector of exogenous 

gross returns (𝑃𝑖,𝑛,𝑡) which is negatively correlated to the severity of the stochastic loss 

component (Bolt et al., 2012), and whose calibration relies on historical bank-specific net 

operating income data. We refer to Section 4 for technical details about the data and calibration. 

Overall, we obtain two vectors of shocks, respectively a profit and loss vector (𝑃𝐿𝑖,𝑛,𝑡) - 

Equation 1a - and a funding shock vector (𝐹𝑖,𝑛,𝑡) - Equation 1b - which are used to derive 1-

year ahead distribution of banks’ balance sheets at time t. 

𝑃𝐿𝑖,𝑛,𝑡 =  𝑃𝑖,𝑛,𝑡 − 𝐿𝑖,𝑛,𝑡 − 𝐿𝑖,𝑛,𝑡
𝐻𝐻                                                                                                        (1𝑎) 

𝐹𝑖,𝑛,𝑡
1 =  𝐹𝑖,𝑛,𝑡 + 𝐹𝑖,𝑛,𝑡

𝐻𝐻                                                                                                                         (1𝑏) 

3.3 Balance Sheet Accounting 

Banks’ balance sheet variables are derived for n simulations conditional to the bank-specific 

vector of shocks, respectively solvency (PL) and liquidity shocks (F). Hence, the starting 

balance sheet position (S=0) of bank (i) at time (t) is updated accordingly to obtain balance 

sheet position post STEP 1 (S=1), i.e. post-shock.  In this respect, we update banks’ total assets 

(𝑇𝐴𝑖,𝑛,𝑡
1 ), risk weighted assets (𝑅𝑊𝐴𝑖,𝑛,𝑡

1 ), cash (𝐶𝐴𝑆𝐻𝑖,𝑛,𝑡
1 ), CET1 and TIER1 capital 

(𝐶𝐸𝑇1𝑖,𝑛,𝑡
1  𝑎𝑛𝑑  𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡

1 ), CET1 capital ratio (𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡
1 ) and Leverage Ratio (𝐿𝑅𝑖,𝑛,𝑡

1 ) as 

well as the network of exposures, respectively loan network (𝐿𝑖,𝑗,𝑛,𝑡
1 ), security network (𝑆𝑖,𝑗,𝑛,𝑡

1 ), 

and the funding network (𝐹𝑖,𝑗,𝑛,𝑡
1 ) between bank i and counterparty j12.  

Table 1 summarizes the UK banking system’s balance sheet composition and reports the 

relevance of each variable (as aggregate). In this respect, the PL shock affects the loan and 

security portfolios on the asset side and the capital base on the liability side. Contrary, a funding 

shock affect the deposit base of a bank on the liability side and simultaneously the cash base 

on the asset side. In this methodology we do not model derivatives on both sides of the balance 

 
12 Appendix B reports the technical details. 
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sheet as well as other assets and liabilities and short positions. Overall, we capture 86% of UK 

banks’ assets and liabilities making our methodology well-representative.  

Table 1 – Banking System’s Stylized Balance Sheet Decomposition  

 
Source: Supervisory template FINREP F.01 and F.02. 

Note: Values in brackets refer to share of total assets. Securities are split between Bond (14%) and Equity (3%) 

instruments. Other Assets such as investments in subsidiary and joint ventures, tangible (property, plant and 

equipment investment property) and intangible assets (goodwill and other intangible assets and intangible assets), 

current and deferred taxes, and non-current assets. Capital refers to own funds.  

3.4 Regulatory Constraints: Default and Distress Thresholds 

We model three states of a bank, respectively, viable, distress and default. A bank is viable 

when none of the constraints is breached. Contrary, a bank is in distress or default when it 

breaches regulatory capital, leverage and liquidity requirements, respectively buffer and 

minimum requirements. 

Default Conditions 

A bank is in solvency default if CET1 ratio is below CET1 minimum capital requirements 

which is calibrated to 7% of a bank’s RWAs given additional Tier 1 instruments (AT1) get 

converted into CET1 capital once this threshold is breached.  

A bank is in leverage default if a bank’s leverage ratio is larger than 31 times (3.25%) its TIER1 

capital13. A bank is in liquidity default if the sum of cash and stock of HQLAs falls below its 

liquidity needs.  

Distress Conditions 

A bank is in solvency distress if it breaches its CET1 capital buffer requirements which are set 

to 10% of RWAs.  

A bank is in leverage distress if its leverage ratio is larger than 25 times its TIER1 capital.  

A bank is liquidity distress if its cash buffer, capturing a bank’s liquidity preference, falls below 

014. This set of states are used to trigger banks’ management actions aiming at improving a 

 
13 Prior to mid-2016 this threshold was set to 33 (3%) as by Basel standards. In this respect, for comparability 

purposes across quarters we use a constant threshold throughout the entire period of analysis. For reference on 

leverage ratio calculation see PRA Rulebook.  
14 Appendix C reports the mathematical derivation. 

Assets Liabilities

CAPITAL (6%)

CASH (14%)

DEBT SECURITY (12%)

DERIVATIVES (11%)

LOAN (54%)

SECURITY (17%)

DERIVATIVES (6%)

OTHER ASSETS (9%)

DEPOSIT (68%)

OTHER FIN. LIABILITY (2%)

SHORT POSITION (1%)
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bank’s current state, as well as market reactions which may further deteriorate a bank’s capital, 

leverage, and liquidity position.    

3.5 Management Actions and Behavioural Rules 

3.5.1 Bank Runs 

We introduce bank runs into the methodology by modelling short-term (1-month) funding 

withdrawals (𝐹𝑖,𝑛,𝑡
𝐵𝑅 )  from the financial corporate and non-financial corporate sectors 

conditional to a bank’s breach of its solvency or leverage distress thresholds (post STEP 1 

shocks, 𝐷𝑆𝑖,𝑛,𝑡
𝐶𝐸𝑇1 and 𝐷𝑆𝑖,𝑛,𝑡

𝐿𝐸𝑉) and proportional to the severity of the solvency shock experienced. 

This is the first solvency-liquidity interaction we introduce into the methodology. This set of 

market responses can be due to a precautionary motive, whose evidence was found during the 

2008 GFC as in Berrospide (2021), and Acharya and Merrouche (2012), or to a speculative 

motive as found in Gale and Yorulmazer (2013) or due to a more generalized hoarding 

behaviour (Benzoni et al., 2015, Guisio et al., 2018). Hence this modelling feature influences 

the liquidity ratios as well as the leverage ratio since cash reserves are deducted from leverage 

exposures per leverage ratio calculation. Funding shock vector gets updated to values of 𝐹𝑖,𝑛,𝑡
2 . 

𝐹𝑖,𝑛,𝑡
2  =  𝐹𝑖,𝑛,𝑡

1  + (𝐹𝑖,𝑛,𝑡
𝐵𝑅 | 𝐷𝑆𝑖,𝑛,𝑡

𝐶𝐸𝑇1 = 1 𝑜𝑟 𝐷𝑆𝑖,𝑛,𝑡
𝐿𝐸𝑉 = 1)                                                                  (2) 

3.5.2 Secured and Unsecured Borrowing 

Once the vector of funding shocks (𝐹𝑖,𝑛,𝑡
2 ) is computed, we allow banks to access the secured 

and unsecured money markets to potentially offset funding withdrawals (Bindseil, 2013). In 

this respect, we assume banks to target a minimum level of cash reserves ratio (as share of total 

assets), defined as target cash base (𝐶𝑎𝑠ℎ_𝑏𝑎𝑠𝑒𝑖,𝑡
𝑇 ).This level is calibrated according to banks’ 

historical cash ratio volatility (𝜎𝑖
𝐶𝑎𝑠ℎ), which resembles banks’ preference in using cash buffer 

to offset liquidity shocks (𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡).  

𝐶𝑎𝑠ℎ_𝑏𝑎𝑠𝑒𝑖,𝑡
𝑇 =  𝐶𝑎𝑠ℎ𝑖,𝑡 − 𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡                                                                            (3𝑎)  

𝑊ℎ𝑒𝑟𝑒: 𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡 =
𝜎𝑖

𝐶𝑎𝑠ℎ

𝐸[𝐶𝑎𝑠ℎ𝑖]
∗ 𝐶𝑎𝑠ℎ𝑖,𝑡  

Hence, banks are assumed to implement funding management actions when the cash base is 

below the initial target, that is, when the cash buffer post funding shocks (𝐹𝑖,𝑛,𝑡
2 ) turns negative. 

Hence, we derive the bank-specific demand for funding (𝐷𝑖,𝑛,𝑡) as reported in Equation 3b. 

𝐷𝑖,𝑛,𝑡 =  𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡  −  𝐹𝑖,𝑛,𝑡
2    𝑤ℎ𝑒𝑛 𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡  −  𝐹𝑖,𝑛,𝑡

2  <  0                        (3𝑏)    

Next, demand for funding at a bank-level is satisfied via secured and unsecured borrowing and 

constrained by the size of the secured and unsecured markets (supply functions) as well as by 
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the amount of HQLA available to pledge for repo transactions. Hence, we derive supply 

functions for secured and unsecured funding consistently with findings from the relevant 

literature and calibrate the market size to be in the range of 80 to 130 billion £ on the secured 

market, and 36 to 48 billion £ on the unsecured market15.  

In this respect, Di Filippo et al. (2020) and DeFiore et al. (2017) provide evidence that a 

substitution effect exists between the demand for unsecured and secured funding: the latter 

increases and the former reduces in times of stress (when counterparty credit risk increases)16. 

The reduction of unsecured lending is motivated by the precautionary liquidity hoardings. The 

supply of the secured funding increases when the credit risk increases as banks perceive repos 

to be a safer transaction since it implies a collateralized operation (Nagel, 2016, Gorton, 2017). 

Reduced lending on the unsecured market is explained via also credit rationing, and refinancing 

is still possible on the secured market (Hoerova and Monnet, 2016). Besides the increased 

counterparty risk, decline of lending can be explained with declining trust among banks, as in 

Allen et al. (2020). Empirical data on the UK market is in line with these theoretical 

considerations. On the one hand, Hüser et al. (2024) showed that the volumes of the secured 

repo market increased during the dash for cash episode of 2020, with banks doubling their 

average daily cash lending, on the other hand Acharya and Merrouche (2012) provide evidence 

that the UK unsecured market collapsed during the 2008 GFC.  

Hence, we first model in aggregate the supply and demand of liquidity in the (un)secured 

markets following Dehmej and Gambacorta (2019)’s approach, where the system supply 

depends on the amount of capital and deposits, alongside the market-specific interest spread 

(𝑠𝑝𝑟𝑒𝑎𝑑𝑡
(𝑢𝑛)𝑠𝑒𝑐

). Whereas the system demand depends on aggregated set of banks’ total 

funding need (∑ 𝐷𝑖,𝑛,𝑡
𝐼
𝑖 ) and the interest spread. 

 𝑆𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐 = 𝑎𝑡

(𝑢𝑛)𝑠𝑒𝑐 + 𝑏 · 𝑠𝑝𝑟𝑒𝑎𝑑𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐

, b > 0 (3c) 

 

 𝐷𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐 = 𝑐𝑡

(𝑢𝑛)𝑠𝑒𝑐 − 𝑑 · 𝑠𝑝𝑟𝑒𝑎𝑑𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐

, d > 0. (3d) 

 

We calibrate values a, b, c, and d for each quarter and realisation such that the resulting demand 

and supply functions at medians (normal times) and tail realisations (stress conditions) 

correspond to the observed historical volumes in the (un)secured UK markets. Hence, our 

 
15 See Appendix D for details about the calibration.  
16 To avoid reputational costs, banks try to avoid breaching the regulatory requirements (in line with the BoE and 

PRA Discussion Paper (DP) 1/22) despite HQLA having purpose of being usable in stress events (Duncan et al., 

2022). Reason being that it could lead to a liquidity spiral where banks cannot access funding as before, and/or 

face greater funding costs.  
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approach captures the substitution effect taking place between the two markets in stress time 

(di Filippo et al., 2022; Piquard and Salakhova, 2019; and DeFiore et al., 2017). If the level 

and dispersion of risk are low, the unsecured interbank market operates smoothly (Heider et 

al., 2009). When risk increases, safer banks leave the unsecured market, and the interest rate 

rises to reflect the presence of riskier banks and a constrained supply. Furthermore, it also 

depends on the overall market-wide risk as described in Bechara et al. (2024). These features 

imply that the worse the funding shock realization, the higher is the demand for secured funding 

relative to the unsecured one17. The realized severity affects our supply curve.  

Contrary, the demand curve is downward sloping at each realisation, both on the secured and 

unsecured market, with banks being price takers. We obtain optimal quantities and spreads on 

both markets where the supply and demand functions intersect by equating (3c) and (3d), in 

each quarter and each realisation: 𝑆𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐  𝑜𝑝𝑡𝑖𝑚𝑎𝑙  = 𝐷𝑛,𝑡

(𝑢𝑛)𝑠𝑒𝑐  𝑜𝑝𝑡𝑖𝑚𝑎𝑙
.   

These quantities on the system level are then distributed across banks by using individual 

demands for liquidity at bank level. We calculate the demand weights for each bank in each 

realisation by quarter and distribute the total secured and unsecured borrowing accordingly18. 

We so derive the bank-specific vector of realized quantities for secured (𝐵𝑖,𝑛,𝑡
𝑆 ) and unsecured 

borrowing (𝐵𝑖,𝑛,𝑡
𝑈 ). We so obtain the updated level of cash reserves (𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡

3 ): 

 𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
3 = 𝐶𝑎𝑠ℎ𝑖,𝑡 −  𝐹𝑖,𝑛,𝑡

2 + (𝐵𝑖,𝑛,𝑡
𝑆 +     𝐵𝑖,𝑛,𝑡

𝑈 )                                                                           (4)  

3.5.3 Funding Costs 

The second solvency-liquidity interaction we introduce into the methodology is the modelling 

of the funding cost channel (FC) as a function of the quantity borrowed from secured and 

secured markets (𝐵𝑖,𝑛,𝑡
𝑆 +   𝐵𝑖,𝑛,𝑡

𝑈 ) and the cost of funding, i.e. the applied interest rate (CoF). 

The empirical literature finds an inverse relationship between banks’ solvency position and the 

implied interest rate. Aymanns et al. (2016) on a large sample of US global banks find that 

solvency position is negatively related to funding costs, with wholesale funding cost being 

more sensitive to solvency position during stress time when compared to normal times, with 

the relationship being also non-linear. Similar evidence can be found in Hasan et al. (2016) 

covering a sample of 160 global banks. Higher solvency risk also limits the access of a bank to 

short-term funding, as found in Annaert et al. (2013), Babihuga and Spaltro (2014), and Pierret 

 
17  See Table D.3 in Appendix D. 
18 The weights are based on each bank’s share of liquidity needs over total needs in the system. We also constrain 

the amount of secured borrowing according to the amount of HQLA assets available to pledge and deduct this 

quantity from the portfolio of securities.    
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(2015). When focusing on UK banks, Dent et al. (2021) found that a negative shock to banks’ 

solvency position is associated with an increase in banks’ marginal cost of wholesale funding. 

Authors confirm existence of a non-linear relationship between funding costs and solvency 

shocks: based on a threshold model, authors find that a deterioration in the leverage ratio of 

100 bps can increase CDS premia (funding cost proxy) from 6.5 (low risk) to 30 basis points 

(high risk) on average. Other evidence of a non-linear relationship between solvency and 

funding costs is found in Schmieder et al. (2012) and BSBC (2013). Moreover, there is also 

evidence of a systemic factor influencing cost of funding as shown by Acharya and Merrouche 

(2012) who argue that borrowing rates depend on market conditions regardless of banks’ 

counterparty risk. 

Consistently with this set of stylized facts, we model the cost of funding (eq. 5) as a function 

of three main factors, respectively the central bank main refinancing rate (𝐶𝐵𝑡) which is 

quarter-specific, a systemic market component or market spread capturing the stress 

experienced in the funding market (𝑠𝑝𝑟𝑒𝑎𝑑𝑛,𝑡
𝑠𝑦𝑠

) across realisations (n), and a bank-specific 

component (𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑛,𝑡
𝑏𝑎𝑛𝑘) capturing banks’ deteriorated solvency position mapped according 

to their distance to default (DtD): 

 𝐶𝑜𝐹𝑖,𝑛,𝑡 = 𝐶𝐵𝑡 + 𝑠𝑝𝑟𝑒𝑎𝑑𝑛,𝑡
𝑠𝑦𝑠

+ 𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑛,𝑡
𝑏𝑎𝑛𝑘                                  (5) 

The central bank main refinancing rate is observed at each quarter t. Then, the system spread 

for secured and unsecured markets is modelled in a non-linear way and is proportionate to the 

severity of funding shocks aggregated on a system level. System spreads relative to CB rate 

range from -10 (normal times) to +20 basis points in period of elevated stress (Covid) for the 

secured market and -4 to 22 bps for the unsecured market, which is based on historical data. 

The bank-specific spread is modelled as in Hałaj (2018), that is, based on a bank’s deteriorated 

solvency position after the initial shock, i.e. CET1 ratio distance to default from minimum 

capital requirements such that the DtD is rescaled into additional 0 to 500 basis points, where 

500 bps approximates an institution that is close to default19. Dynamics of both secured and 

unsecured values of CoF is shown in Appendix E. 

After deriving the cost of funding for each bank (i) in each simulation (n), and at time (t) for 

secured and unsecured borrowing, we derive a bank’s total funding costs (𝐹𝐶𝑖,𝑛,𝑡) over a 90 

days stress scenario as follows: 

𝐹𝐶𝑖,𝑛,𝑡 =  𝐹𝐶𝑖,𝑛,𝑡
𝑆 + 𝐹𝐶𝑖,𝑛,𝑡

𝑈                                                                                                                     (6)  

 
19 This calibration is in line with findings in the literature (Bonfim and Santos, 2004; and Schmitz et al., 2017). 
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𝑊ℎ𝑒𝑟𝑒: 𝐹𝐶𝑖,𝑛,𝑡
𝑆 =   (𝐵𝑖,𝑛,𝑡

𝑆 ∗  𝐶𝑜𝐹𝑖,𝑛,𝑡
𝑆 ) ∗

90 𝑑𝑎𝑦𝑠

360
  ;    𝐹𝐶𝑖,𝑛,𝑡

𝑈 =   (𝐵𝑖,𝑛,𝑡
𝑈 ∗  𝐶𝑜𝐹𝑖,𝑛,𝑡

𝑈 ) ∗
90 𝑑𝑎𝑦𝑠

360
    

We re-update all banks’ balance sheet accordingly (index 3) and the network of exposures.  

3.5.4 Fire-Sales Mechanism  

Next, we introduce fire sale mechanics into the methodology which are designed to satisfy 

potential remaining liquidity needs, and to accommodate deleveraging needs due to a leverage 

ratio being above a bank’s target leverage - the third solvency-liquidity interaction.   

Selling Pressure 

A bank aims to liquidate 𝑄𝑖,𝑛,𝑡
∗  of security holdings if the leverage ratio post shock (𝐿𝑅𝑖,𝑛,𝑡

3 ) is 

above its initial target leverage (𝐿𝑅𝑖,𝑡
𝑇 ). This level is calibrated according to banks’ historical 

leverage ratio volatility (𝜎𝑖
𝐿𝑒𝑣), which resemble banks’ risk preference. This implies that if 

leverage ratio stays within this confidence band (𝐿𝑅𝑖,𝑡
𝑇  , 𝐿𝑅𝑖,𝑡) banks do not act. This feature is 

implemented to avoid banks being over-reacting to small shocks20.  

𝑄𝑖,𝑛,𝑡
∗ =  𝑇𝐴𝑖,𝑛,𝑡

3 − 𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
3  −  𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡

2 ∗  𝐿𝑅𝑖,𝑡   𝑖𝑓   𝐿𝑅𝑖,𝑡
3 >  𝐿𝑅𝑖,𝑡

𝑇                                       (7) 

Where: 𝐿𝑅𝑖,𝑡
𝑇 = 𝐿𝑅𝑖,𝑡 +

𝜎𝑖
𝐿𝑒𝑣

𝐸[𝐿𝑒𝑣𝑖]
∗ 𝐿𝑅𝑖,𝑡      

Moreover, as discussed in Section 3.1, we model the deleveraging process consistently with a 

leverage adjustment speed which assume partial-deleveraging. As presented in Duarte and 

Eisenach (2021), we calibrate the leverage adjustment speed (𝐿𝑎𝑆𝑖,𝑛,𝑡) to be in the range 

[12.5% - 35%] and positively related to the deleveraging needs (𝑄𝑖,𝑛,𝑡
∗ ) a bank experiences, that 

is, the higher the needs, the faster the adjustment speed21.  

𝑄𝑖,𝑛,𝑡
∗∗ = (𝑄𝑖,𝑛,𝑡

∗ ∗  𝐿𝑎𝑆𝑖,𝑛,𝑡)    𝑤𝑖𝑡ℎ    𝐿𝑎𝑆𝑖,𝑛,𝑡  ∈   [12.5%𝑛 ∈(1𝑡ℎ 𝑑𝑒𝑐𝑖𝑙𝑒)  −  35%𝑛 ∈(9𝑡ℎ 𝑑𝑒𝑐𝑖𝑙𝑒)]     

Afterwards, if a bank did not succeed to restore a non-negative cash buffer (𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑛,𝑡
3 ) 

via secured and unsecured borrowings, it may incur into asset sales to achieve that. Depending 

on whether the remaining funding needs are larger than deleveraging needs, the final quantity 

of assets sold (𝑄𝑖,𝑛,𝑡
∗∗∗ ) by bank is determined as follows: 

 
20 We assume as in Cont and Schaanning (2019) and Covi and Huser (2024) among others that banks have 

imperfect information on asset price dynamics and sell 𝑄𝑖,𝑛,𝑡
∗  using current asset prices and not the realized ones 

post fire sales. This assumption is consistent with the price impact derivation, which is a function of security-

specific selling pressures and market-selling pressures (or market stress), both being a function of total banks’ 

asset sales.  
21 We map a bank’s deleveraging need into deciles, and apply incremental steps to the adjustment speed of 2.5%, 

from 12.5% (lowest decile) up to 35% (top decile).  
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𝑄𝑖,𝑛,𝑡
∗∗∗ = 𝑄𝑖,𝑛,𝑡

∗∗    𝑖𝑓   𝑄𝑖,𝑛,𝑡
∗∗ >  |𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑛,𝑡

3 |   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑄𝑖,𝑛,𝑡
∗∗∗ = |𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑛,𝑡

3 |        

Finally, to determine the quantity of each security (s) to be sold (𝑄𝑖,𝑠,𝑛,𝑡
∗∗∗ ) we assume that banks 

rely on a pro-rata approach, that is, a proportional allocation across all securities in a firm’s 

portfolio (Covi and Huser, 2024). This approach is also corroborated by Jiang et al. (2021) and 

Schaanning (2016) that suggest that a pro-rata approach is more suitable for periods of stress. 

Finally, we derive the total market selling pressure (𝑄𝑛,𝑡
𝑀 ) by summing across banks the realized 

bank-specific selling pressure (𝑄𝑖,𝑛,𝑡
∗∗∗ ): 

𝑄𝑛,𝑡
𝑀 = ∑ 𝑄𝑖,𝑛,𝑡

∗∗∗

𝐼

𝑖

 

Price Impact Function 

Once we have determined the quantity sold for each security (𝑄𝑖,𝑠,𝑛,𝑡
∗∗∗ ), we rely on 

heterogeneous price impact functions to derive the security-specific price change 𝑝𝑠,𝑛,𝑡
∗ . In this 

respect, the literature has used multiple approaches, homogeneous versus heterogeneous price 

functions calibrated on a security or asset-class level. One of the most common approaches is 

Cont and Wagalath (2016) which derives a price change conditional to the volumes sold and 

the depth of the market for the asset (s)22. We follow Covi and Huser (2024) and rely on Fukker 

et al. (2022) who estimate non-linear price impact functions via quantile regression for a wide 

range of securities (bond and equity) with heterogeneous characteristics23. Moreover, 

conditional to the characteristic of the security, the price impact varies as a non-linear function 

of the security-specific volume sold (£10, 50, 100 million) and according to the severity of the 

fire-sale events (ranked by percentiles)24 . Hence, we borrow from Fukker et al. (2022)’s the 

set of security-specific price impact functions (𝐹𝑠) and we match them to our set of securities 

(s) according to the above described characteristics. For each 𝐹𝑠 we determine the realized price 

impact according to i) the estimated security-specific total selling pressure (𝑄𝑠,𝑛,𝑡
∗  ) summing 

 
22 Calibrating the market depth on a security-level across time is data intensive and not feasible to extend to a 

large number of securities. Moreover, this approach does not consider how price changes are affected non-linearly 

conditional to the severity of the fire-sales. For this set of reasons, 
23 Respectively by issuing sectors (NFC, GG, FC, CI) and country as well as by rating (low, medium, high) and 

size of the firm (small, medium, large). 
24 For each security the price impact also depends on the percentile of the historical price change distribution, 

which we model via the market selling pressure. 
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across all banks and ii) the estimated Market Selling Pressure (𝑄𝑛,𝑡
𝑀 ) whose severity is 

determined by its percentile compared across simulations and quarters25.  

𝑝𝑠,𝑛,𝑡
∗ =  𝐹𝑠(𝑄𝑠,𝑛,𝑡

∗∗∗    ,   𝑄𝑛,𝑡
𝑀  )                                                                                                                 (8)   

Fire-Sale Losses 

As last step, we derive Mark-to-Market losses (𝐹𝑆𝑖,𝑛,𝑡) for each firm i’s portfolio of security 

in each simulation (n) and time period (t). In this respect, we both compute direct (𝐹𝑆𝑖,𝑛,𝑡
𝐷 ) and 

indirect losses  (𝐹𝑆𝑖,𝑛,𝑡
𝐼𝑛𝑑 ) respectively on the security sold as well as on the remaining securities 

in firms’ portfolios. 

𝐹𝑆𝑖,𝑛,𝑡 =  𝐹𝑆𝑖,𝑛,𝑡
𝐷 +  𝐹𝑆𝑖,𝑛,𝑡

𝐼𝑛𝑑                                                                                                                      (9) 

𝑊ℎ𝑒𝑟𝑒:  𝐹𝑆𝑖,𝑛,𝑡
𝐷 = ∑ 𝑄𝑖,𝑠,𝑛,𝑡

∗∗∗𝑆
𝑠 ∗  𝑝𝑠,𝑛,𝑡

∗    𝑎𝑛𝑑    𝐹𝑆𝑖,𝑛,𝑡
𝑖𝑛𝑑 = ∑ 𝑄𝑖,𝑠,𝑛,𝑡

𝑃𝑆
𝑠 ∗  𝑝𝑠,𝑛,𝑡

∗    

In the end, we re-update all banks’ balance sheets accordingly (index 4). Specifically, the 

generated liquidity from asset sales go to increase a bank’s cash reserves (which are exempted 

from leverage exposure calculation) and thus affects positively (reduce) the leverage ratio, 

thereby counterbalancing the negative impact from fire-sale losses which reduce the capital 

base - denominator of the leverage ratio. Depending on whether the numerator (asset 

exposures) decreases faster than the denominator (Tier 1 capital), the leverage ratio may 

improve or further deteriorate post fire-sale dynamics. We test this feature in the sensitivity 

analysis section by performing a counterfactual policy exercise. Among the key factors 

affecting the positive/negative variation in the leverage ratio, banks’ portfolio composition 

plays a crucial role. In fact, the higher the share of risky assets and the higher the price impact 

experienced, the faster the decrease in the denominator (Tier 1) relative to the numerator (TA). 

The leverage ratio is not the only regulatory ratio that is affected by the deleveraging process. 

It may also contribute to reduce the bank’s stock of risk weighted assets which is used to derive 

the CET1 capital ratio (CET1 / RWA). In this respect, we acknowledge this channel and we 

adjust the stock of RWAs by the quantity of assets sold (𝑄𝑖,𝑛,𝑡
∗∗∗ ) multiplied by the share of RWAs 

over total assets which is adjusted by the share of risky assets over total assets (1-HQLA share) 

given HQLAs have 0 risk weights.  In the end, we re-update all banks’ balance sheet 

accordingly (index 5) and the network of exposures. 

 
25 The relative severity of market selling pressure which approximates the severity of the fire-sale event is 

compared across quarters since the total selling pressure in the 99th percentile during the pandemic period (2020-

2021) is way larger than the total selling pressure for the 99th percentile during normal times (post pandemic), 

which is close to the 80th percentile of the pandemic period.  
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3.5.5 Interbank Contagion 

As last step, we consider the potential effects of solvency contagion via interbank exposures 

conditional to an institution being insolvent or illiquid. The solvency contagion channel has 

been always considered as one of the main channels of risk propagation in the interbank market 

since it accounted for a large share of interbank losses in the 2008 GFC (Glasserman and 

Young, 2016). Nonetheless, Bardoscia et al. (2017) has more recently identified a long-term 

decline in the contagion role played by this channel as we find. Hence, we rely on the standard 

Eisenberg and Noe (2001)’s approach to estimate potential losses (𝑆𝐶𝑖,𝑛,𝑡) on interbank 

exposures (𝐼𝑁𝑇𝑖,𝑗,𝑛,𝑡) given counterparty bank j being in default (𝑌𝑗,𝑛,𝑡 = 1). 

𝑆𝐶𝑖,𝑛,𝑡 = ∑ 𝐼𝑁𝑇𝑖,𝑗,𝑛,𝑡 ∗ 𝐿𝐺𝐷𝑖,𝑗,𝑛,𝑡 ∗  𝑌𝑗,𝑛,𝑡 

𝐽

𝑗

𝑤ℎ𝑒𝑟𝑒 𝑌𝑗,𝑛,𝑡 = 1                                                       (10) 

3.6 Simulation Steps 

As described in Section 3.1, we repeat the management action cycle presented in Section 3.5 

twice given that in our framework we model the deleveraging process consistently with a 

leverage adjustment speed assuming partial-deleveraging (Duarte and Eisenbach, 2021). Thus, 

we calculate the sum of two rounds of funding costs, fire sale costs and solvency contagion 

costs as follows: 

𝐹𝐶𝑖,𝑛,𝑡 =  (𝐹𝐶𝑖,𝑛,𝑡
𝑅1 + 𝐹𝐶𝑖,𝑛,𝑡

𝑅2  ) ;   𝐹𝑆𝑖,𝑛,𝑡 =  (𝐹𝑆𝑖,𝑛,𝑡
𝑅1 + 𝐹𝑆𝑖,𝑛,𝑡

𝑅2  ) ;   𝑆𝐶𝑖,𝑛,𝑡 =  (𝑆𝐶𝑖,𝑛,𝑡
𝑅1 + 𝑆𝐶𝑖,𝑛,𝑡

𝑅2  ). 

Other approaches in the literature rely exclusively on one single cycle of management actions 

or asset liquidations given the first-round accounts for the majority of fire-sales spillovers 

(Caccioli et al. 2024). Ramadiah et al. (2022) also shows that conditional to a leverage targeting 

approach, one round seems to be the optimal approach. Contrary, Sydow et al. (2024) 

implement multiple rounds, although they show that most of the effects take place within the 

first two rounds of asset liquidation.   

3.7 Model Outputs 

At this point, we are in the position to derive a profit and loss distribution (𝑃𝐿𝑖,𝑛,𝑡
𝑃𝑀𝐴) 

comprehensive of credit and market risk losses, augmented with net operating income, and 

amplified by solvency-liquidity interactions and financial contagion, that is, post banks’ 

management actions (MA). Leveraging upon the stochastic approach, the aim is to study the 

severity and probability of tail outcomes affecting the UK banking sector. We thus aggregate 

the 𝑃𝐿𝑖,𝑛,𝑡
𝑃𝑀𝐴 across banks to obtain a 𝑃𝐿𝑛,𝑡

𝑃𝑀𝐴 at the system level and so derive a Conditional 



25 
 

Capital at Risk measure (𝐶𝐶𝑎𝑅𝑡
𝑥) tracking tail risk developments proxied by value at risk at the 

99th, 95th and 90th percentiles of the distribution.  

𝑃𝐿𝑖,𝑛,𝑡
𝑃𝑜𝑠𝑡𝑀𝐴 = (𝑃𝑖,𝑛,𝑡 − 𝐿𝑖,𝑛,𝑡 − 𝐿𝑖,𝑛,𝑡

𝐻𝐻 ) − (𝐹𝐶𝑖,𝑛,𝑡 +  𝐹𝑆𝑖,𝑛,𝑡 + 𝑆𝐶𝑖,𝑛,𝑡)                                   (11𝑎) 

𝑃𝐿𝑛,𝑡
𝑃𝑜𝑠𝑡𝑀𝐴 = ∑ 𝑃𝐿𝑖,𝑛,𝑡

𝑃𝑜𝑠𝑡−𝑀𝐴

𝐼

𝑖

                                                                                                         (11𝑏) 

𝐶𝐶𝑎𝑅𝑡
𝑥 = [𝑃𝐿𝑛,𝑡

𝑃𝑜𝑠𝑡𝑀𝐴 | 𝑛 ∈  (99𝑡ℎ, 95𝑡ℎ , 90𝑡ℎ)]                                                                       (11𝑐)  

Moreover, we also define the Conditional Liquidity at Risk measure (𝐶𝐿𝑎𝑅𝑡
𝑥) tracking the total 

amount of potential funding outflows (𝑇𝐹𝑂𝑖,𝑛,𝑡) proxied by value at risk at the 99th, 95th and 

90th percentiles of the distribution. Total funding outflows are derived as the sum of pre-bank-

run funding withdrawals (𝐹𝑖,𝑛,𝑡
𝐵𝑅1), funding withdrawals from bank-runs in the first round (𝐹𝑖,𝑛,𝑡

𝐵𝑅2), 

and banks-runs taking place in the second round (𝐹𝑖,𝑛,𝑡
3 ). We scale this output variable by the 

cash base and other liquidity measures to assess its size in relative terms. 

𝑇𝐹𝑂𝑖,𝑛,𝑡 = (𝐹𝑖,𝑛,𝑡
1 + 𝐹𝑖,𝑛,𝑡

𝐵𝑅1 + 𝐹𝑖,𝑛,𝑡
𝐵𝑅2)                                                                                            (12𝑎) 

𝑇𝐹𝑂𝑛,𝑡 = ∑ 𝑇𝐹𝑂𝑖,𝑛,𝑡

𝐼

𝑖

                                                                                                                    (12𝑏) 

𝐶𝐿𝑎𝑅𝑡
𝑥 = [𝑇𝐹𝑂𝑛,𝑡 | 𝑛 ∈  (99𝑡ℎ, 95𝑡ℎ , 90𝑡ℎ)]                                                                            (12𝑐)  

Nonetheless, from a financial stability perspective 𝐶𝐶𝑎𝑅𝑡
𝑥 is not an exhaustive indicator since 

an assessment of the system’s fragility needs to be carried out by comparing potential tail 

outcomes against banks’ capital and liquidity positions. In this respect, given we also derive 

consistently with 𝑃𝐿𝑖,𝑛,𝑡
𝑃𝑀𝐴 a full distribution of banks’ balance sheet variables (CET1 ratio, 

leverage ratio and liquidity ratio), we can compute banks’ default probability in terms of 

insolvency and illiquidity against regulatory default thresholds described in Section 3.426. 

We so derive 1-Year ahead default probability of the banking system (𝑃𝐷𝑡) by multiplying 

each bank’s default probability (𝑃𝐷𝑖,𝑡) by a vector of time-invariant bank weights (𝑤𝑖) 

measured as the average bank’s share of total assets of the system over the period of analysis27.    

 
26 See Appendix C for more details. 
27 We opt for a weighted average instead of a simple average to control for bank heterogeneity since within our 

sample of banks, the largest bank (HSBC) has 25 times the asset size of the smallest bank (Virgin Money). 

Moreover, we use a vector of constant weights to remove noise stemming from weights varying over time.  
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𝑃𝐷𝑖,𝑡 =  ∑
𝑌𝑖,𝑛,𝑡

𝑁

𝑁

𝑛

 𝑤ℎ𝑒𝑟𝑒 𝑌𝑖,𝑛,𝑡 = 1  𝑖𝑓 {

𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡 <  7%

𝐿𝑅𝑖,𝑛,𝑡 > 31

𝐿𝐼𝑄𝑖,𝑛,𝑡 < 0
                                                  (13𝑎)  

 

𝑃𝐷𝑡 =  ∑ 𝑃𝐷𝑖,𝑡 ∗  𝑤𝑖

𝐼

𝑖

 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 𝐸 [
𝑇𝐴𝑖,𝑡

∑ 𝑇𝐴𝑖,𝑡
𝐼
𝑖

]                                                                      (13𝑏) 

 

4 Data and Calibration 

The model is estimated on a sample of seven major UK banking groups capturing £6.289 

billion of total assets as of Q1 2024 and spanning over 37 quarters between Q1-2015 and Q1-

202428. No study in the stress testing and related financial network literature has been capable 

to estimate and test a microstructural model on a such long time-series dimension, usually 

limiting the analysis to a specific snapshot date. This represents a key contribution of the paper 

and allows to compare the model outputs consistently across quarters exploiting variation in 

banks’ loan and security exposures as well as banks’ balance sheet characteristics. 

Table 2 reports summary statistics averaged across quarters for the set of banking groups 

subject to the analysis and aggregated at the level of the banking system. The upper section of 

the table shows the set of key regulatory ratios which also represent the starting positions of 

the analysis. The lower section of the table shows statistics for the networks of exposures (as 

ratio over total assets) which we use to model the propagation of shocks between bank i and 

counterparty j (obligor basis). Specifically, the portfolio of securities composed by bond and 

equity instruments range between 10% and 12% of banking system’s total assets, of which half 

of the share is made of HQLA assets. Of similar size is the portfolio of corporate loan, while 

loan exposures to households (HH) range between 23% and 27% of total assets29.  

On the liability side, total funding ratio represents the share of withdrawable deposits such as 

sight deposits, deposits with agreed maturity below 1 month or repo transactions with maturity 

below 1 month30. It ranges between 47% and 54% of total assets, of which roughly 29% is 

made of corporate funding exposures between counterparty j and bank i, and the remaining 

share by deposits from the household sector. Security, loan and funding exposures are mapped 

on a counterparty basis identifying the sector issuing the security or underwriting the 

 
28 The sample of banking groups is made of HSBC, Barclays, Lloyds, NatWest, Standard Chartered, Santander 

UK, and Virgin Money.  
29 As part of the exposure asset network we also track for modelling solvency contagion spillovers interbank 

exposures among the sample of banks which represents a very small share of total asset in the system. 
30 We use 1-month has cutoff threshold to be consistent with a 30-days liquidity stress horizon (LCR assumption).  
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loan/funding contract, and the country of domicile31. Given these qualitative attributes on the 

counterparty, we assign a probability of default parameter to each obligor using a 1-Year 

probability of default (PD) by country and sector, and loss given default parameters (LGD) to 

each asset exposure. This set of risk factors are estimated by the banks themselves; they are 

time-varying on a quarterly basis and are reported as part of COREP 09 supervisory data. In 

the end, we want to highlight that the leverage ratio in the UK regulatory framework since mid-

2016 has excluded from the calculation of the total exposure measure those assets constituting 

claims on central banks to facilitate the implementation of monetary policies at a time of 

exceptional macroeconomic circumstances. Consistently, the minimum LR requirements have 

been recalibrated to 3.25% instead of 3% (or ~31). As discussed in the methodology section 

and in Appendix B, we use the UK leverage framework over the entire period of analysis (also 

prior to mid-2016 for comparability purposes)32.  

Table 2 – Banking System’s Summary Statistics 

 
Source: Supervisory COREP and FINREP data, and stress testing data. 

Note: In brackets we report the denominator used for computing the ratio. Funding variables refer to the share of 

funding that can be withdrawn at sight or with a maturity below 1 month. HQLA ratio does not consider cash 

reserves, but only high-quality liquid securities.  

 

 

 

 

 
31 Respectively, non-financial corporates (NFC), non-bank financial corporates (FC), credit institutions (CI), and 

Governments (GG). For countries, we map exposures to counterparties domiciled in 135 countries.   
32 See Bank of England (2017) for more details on the UK leverage ratio framework. This policy change has 

indeed affected banks’ cash preference over other type of liquid assets. Cash reserves as share of total assets 

increased materially between 2016 and 2024 (post introduction) passing from 7.2% to 13%.  

Balance Sheet Variables 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Total Assets (£ Billion) 5435 5606 5304 5344 5625 6117 5928 6550 6332 6289

RWA ratio (TA) 36.8% 33.8% 32.9% 31.5% 30.1% 27.4% 26.7% 26.5% 27.0% 27.3%

CET1 ratio (RWA) 11.8% 12.8% 14.0% 14.1% 14.2% 15.1% 15.8% 14.1% 14.3% 14.3%

TIER1 ratio (RWA) 14.1% 15.4% 17.0% 17.3% 17.3% 18.0% 18.9% 16.7% 17.0% 16.9%

Leverage ratio 18.0 17.9 16.2 16.4 17.5 18.0 16.8 19.3 18.8 18.9

Leverage ratio Incl. Cash 19.3 19.3 17.9 18.3 19.2 20.3 19.8 22.7 21.8 21.7

Cash ratio (TA) 6.5% 7.2% 9.8% 10.3% 9.1% 11.4% 15.1% 14.8% 13.7% 13.0%

Cash Buffer ratio (TA) 1.3% 1.3% 1.8% 1.9% 1.7% 2.2% 3.0% 2.9% 2.6% 2.5%

Security Portf. Ratio (TA) 11.6% 11.2% 11.9% 11.8% 11.2% 10.9% 12.8% 12.1% 12.1% 12.1%

HQLA ratio (TA) 5.8% 5.6% 5.9% 5.9% 5.6% 5.1% 5.3% 4.8% 5.1% 5.3%

Corp. Loan ratio (TA) 13.0% 12.5% 13.2% 13.1% 12.5% 11.4% 11.6% 10.8% 10.7% 10.8%

HH. Loan ratio (TA) 26.1% 25.2% 26.6% 26.4% 25.1% 23.4% 24.8% 23.5% 24.1% 23.8%

Interbank Exp Ratio (TA) 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.01% 0.01% 0.02% 0.01%

Total Funding ratio (TA) 48.9% 47.3% 50.0% 49.6% 47.2% 46.2% 53.7% 51.6% 49.6% 48.9%

Corp. Funding ratio (TA) 27.8% 26.9% 28.4% 28.2% 26.8% 25.4% 29.7% 29.1% 29.4% 29.4%

HH.Funding ratio (TA) 21.1% 20.4% 21.6% 21.4% 20.4% 20.8% 24.0% 22.4% 20.2% 19.5%
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5 Results 

5.1 Realized Shock Distribution 

We find that over time the UK banking system may experience on average with 1% probability 

(CCaR99) £95 billion of losses within one year horizon, whereas £35 billion with 5% 

probability tracked by CCaR95 index (Figure 2). The peak was reached during the Covid-19 

pandemic (2020-21) at £117 billion, and since then tail risk severity materially reduced, with 

CCaR99 down to 79 billion in 2024q133. As shown in Table 3a, this trend is even more marked 

when we look at the 95th and 90th percentile of the P&L distribution, the latter turning even 

positive in 2023-24 benefiting from higher interest rates and related increased in banks’ 

operating margin. Overall, the system’s expected outcome is £16 billion of average profits over 

time and £27 billion in 2024q1.  

Figure 2: Tail Risk Developments 

 
Note: CCaR refer to Conditional Capital at Risk for the 99th and 95th percentiles. 

5.2 Decomposition of the results 

As we combine multiple financial contagion channels and model the interaction between 

solvency and liquidity risks in a correlated manner that contribute to the overall tail risk 

developments, we decompose the results in this section. 

Digging into the drivers of tail risk, as reported in Table 3b, we find that the reduction in tail 

risk is due to a material improvement in the generation of operating income (ECP), increasing 

from £9 billion in 2021 to £26 billion in 2024, to a material reduction in potential fire-sales 

spillovers, passing from £37 billion to £19 billion in the same period, and a slight decrease in 

credit and market risk losses (ECL), down to £86 billion. Most of the spillover effects stemming 

 
33 Although CCaR99 estimates are not directly comparable to the Bank of England’s stress results given the former 

is based on prevailing quarter-specific macro and financial conditions, and the latter is based on a specific stress 

scenario, our loss estimates do not fall far from ACS results especially when macro-financial conditions 

deteriorate (pandemic period). The BOE’s 2022-23 ACS stress test exercise estimates roughly £136 billion of 

losses taking place within the first year of an adverse stress scenario. The sample of banks is the same. 
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from management actions take place within Round 1 (67%) as shown in Table G1 in Appendix 

G, consistently with findings in previous studies.  

Furthermore, we find that the fire-sale channel is the most relevant feedback and amplification 

channel at play, with an average impact at 99th percentile of £23 billion of losses (explain 18% 

of total variation). The impact varies materially over time between 15% and 28% depending 

on banks’ security portfolio composition, on banks’ starting leverage ratio and cash reserve 

positions, as well as on the severity of solvency shock distribution which is a function of the 

prevailing quarter-specific macro-financial conditions. Puhr and Schmitz (2014) calculate 

approximately 25% of the total loss in the solvency stress test stems from the asset fire sales; 

whereas Schmitz et al. (2019) show that incorporating this interaction results in additional 30% 

reduction of capital ratios. Similarly, Covi et al. (2024) find that fire sale losses conditional to 

VaR99 may account for 33% of total banks’ losses. 

Table 3a: Tail Risk Developments  

 
Note: CCaR refer to Conditional Capital at Risk for the 99th , 95th and 90th percentiles, where AVG reports the 

mean value of the distribution. 

Digging into the drivers of fire-sale (FS) losses, we find the highest severity take place over 

2021-22 (~£36 billion), although the severity of the P&L shock reaches its peak in 2020 (£88 

billion), much higher than £80 billion in 2021 and £60 billion in 2022. This may seem to be 

counterintuitive at a first glance given that deleveraging needs and in turn Fire-sales are 

positively related to the severity of the P&L shock via changes in banks’ capital base and 

leverage ratios. Indeed, FS sales for the 99th percentile are higher by 10% in 2020 (~£460 

billion) than in 2021-2022 (~£420 billion) given the higher P&L shock.  FS losses being higher 

in 2021-22 than in 2020 can be explained by the change in the allocation of banks’ security 

portfolios towards more risky assets with a higher potential downside risk and price impact in 

2021 and 2022 relative to 2020.  The average portfolio risk per unit of security exposure which 

proxies the potential downside risk of a security portfolio in terms of expected MtM losses 

decreases from -1.5% in 2020 to -0.8% in 2024q1. With rising interest rates and the related 

rising bond yields, banks started to invest more into HQLA and government bonds over 2023 

and 2024, thereby reducing their portfolio risk and in turn the potential impact from FS losses. 

 

 

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 AVG

CCaR99 -95 -97 -91 -93 -92 -112 -117 -96 -76 -79 -95

CCaR95 -38 -40 -35 -36 -36 -52 -55 -34 -12 -10 -35

CCaR90 -9 -13 -7 -7 -7 -20 -26 -1 8 7 -7

AVG 16 12 13 14 16 11 8 18 28 27 16
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Table 3b: CCaR99 Decomposition by Channel  

 
Note: CCaR is decomposed by channel respectively, credit and traded risks (ECL), gross profit (ECP), funding 

costs (FC), fire sales spillovers (FS) and solvency contagion (SC). 

Looking at the contribution of the remaining channels, funding costs (FC) have a limited impact 

in the range of £100 to £500 million. This severity is a function of the size of the liquidity shock 

the system experiences, the main refinancing rate prevailing in that period, and the stress 

horizon assumed (90 days). In this respect, the highest impact takes place in 2015 and in 2024, 

though due to different drivers. In 2015 the main driving forces were the lower level of banks’ 

liquidity position jointly with a lower level of banks’ capital position (which affect the severity 

of bank runs), and a higher severity/size of potential funding withdrawals relative to 2024.  As 

shown in Table 4, we estimate that in 2015 funding shocks in the 99th percentile are 10% of the 

total funding shock base (potential withdrawable deposits) or £270 billion instead of 6% in 

2024 (£185 billion)34. Moreover, cash reserves were much lower in 2015 relative to 2024 

(Table 2), and this reduces the funding shock ratio as share of cash reserves (CASH) from 76% 

to 23%. Contrary, the interest rate applied to the amount of liquidity borrowed is higher in 2024 

than in 2015, consistently with a higher central bank refinancing rate, thereby pushing up the 

marginal cost of funding. Overall, the UK banking system seems to be less prone to fundings 

shocks and better insured thanks to the build-up in cash reserves over the period of the analysis.  

To benchmark our estimates, we provide two relevant comparisons. CLaR99 estimates are 

roughly 20-30% the size of the estimated liquidity outflows entailed in the liquidity coverage 

ratio regulation (LCR) for the same sample of banks and time periods. The difference is due to 

the LCR denominator being estimated conditional to a 30 days liquidity stress scenario, 

whereas our estimates, although calibrated to match the same length of the stress horizon (30 

days), are measured as VaR99 according to the prevailing macro-financial conditions in that 

quarter35. Moreover, comparing our estimates with the historical example of the 1931 German 

banking crisis (Blicke et al. 2024) whose average run-off rate was estimated to be in the range 

 
34 Banks runs account on average for 1/3 of total funding withdrawals. 
35 We show in the next section 6.3 that our CLaR99 estimates conditional to a stress scenario resembling a GFC-

type indeed get very close to the LCR assumption on funding outflows. 

CCaR99 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 AVG

ECL -92 -90 -86 -89 -89 -99 -89 -76 -79 -86 -87

ECP 17 12 13 14 15 11 9 16 26 26 16

P&L -75 -78 -72 -75 -74 -88 -80 -60 -53 -60 -71

FC -0.5 -0.4 -0.2 -0.2 -0.2 -0.2 -0.1 -0.2 -0.3 -0.4 -0.3

FS -19 -19 -18 -18 -18 -24 -37 -36 -23 -19 -23

SC -0.04 -0.05 -0.03 -0.04 -0.03 -0.08 -0.04 -0.05 -0.02 0.00 -0.04

P&L PMA -95 -97 -91 -93 -92 -112 -117 -96 -76 -79 -95
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10%-20% given a 90-days stress horizon, we can state that our CLaR99 is well representative 

of a severe case of bank runs36. The key difference resides in the average HQLA share the 

German banking system held at that time, which amounted to 5% of total assets (Blicke et al. 

2024), much lower compared to the UK banking system’s share of cash and HQLA securities 

which averages around 16% of total assets (Table 2). The merit of this improvement in the 

numerator of the liquidity coverage ratio (HQLA) is certainly due to the introduction via Basel 

III standards of stricter liquidity requirements as the LCR itself entails.  

Table 4: Funding Shocks Metrics 

 
Note: Net cash outflows refer to the net change in cash reserves after borrowing from the interbank market, 

whereas net liquidity outflows variable takes into account also the reduced value of banks’ security portfolios.  

In the end, we show in Table G1 in Appendix G that the severity of funding shocks is positively 

correlated (0.37) to the size of the P&L shock due to a common set of obligors defaulting on 

the asset and funding side. The correlation coefficient is increasing moving away from the tail 

of distribution, respectively 95th and 90th (0.42/0.67), since the set of defaulting counterparties 

is less homogeneous in the extreme tails, making funding and solvency shocks less correlated. 

This correlation is strengthened by bank runs across the whole distribution (0.54/0.45/0.68) 

and more materially in the far tail (VaR99) as by model dynamics described in section 3.5.137. 

Contrary, the severity of funding shocks is less correlated (but still positively correlated) to 

total losses (post management actions) across the whole distribution, given that FS sales are 

triggered more by deleveraging needs than funding needs. Finally, the solvency contagion 

channel (SC) has negligible effects given the very limited exposure share among banks 

consistently with findings from Bardoscia et al. (2017). 

 

 

 

 
36 Conditional to the 99.5th percentile, our run-off rate increases up to 13% of the deposit base. For other examples 

of bank run numbers see Appendix F. 
37 We model the severity of funding withdrawals (bank runs) as an increasing function of banks’ deteriorated 

solvency position. 

Funding Shocks (VaR99) 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Funding Shock Base (TA) 49% 47% 50% 50% 47% 46% 54% 52% 50% 49%

Funding Shock Ratio (FB) 10% 10% 7% 7% 7% 9% 9% 7% 6% 6%

Funding Shock Ratio (CASH) 76% 64% 37% 35% 35% 37% 30% 25% 22% 23%

Funding Shock Ratio (CASH+HQLA) 40% 36% 23% 22% 21% 25% 22% 19% 16% 16%

Funding Shock Ratio (CASH+SEC) 27% 25% 17% 16% 15% 18% 16% 14% 12% 12%

Net Cash Outflows (CASH) 15% 16% 13% 12% 10% 10% 8% 11% 10% 9%

Net Cash Outflows (CASH+HQLA) 8% 9% 8% 7% 6% 7% 6% 9% 7% 6%

Net Cash Outflows (CASH+SEC) 5% 6% 6% 5% 4% 5% 4% 6% 5% 5%

Net Liquidity Outflows (CASH) 83% 70% 43% 42% 41% 43% 38% 28% 26% 26%

Net Liquidity Outflows (CASH+HQLA) 44% 39% 27% 26% 26% 30% 28% 21% 19% 18%

Net Liquidity Outflows (CASH+SEC) 30% 27% 20% 19% 19% 22% 21% 15% 14% 13%
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5.3 Average Bank Probability of Default 

As described in Section 3.7, we exploit the P&L distribution to assess whether banks’ capital 

and liquidity ratios may fall below minimum regulatory requirements38. Thus, we compute the 

1-year weighted average bank default probability pre (PD) and post-management actions (PD 

PMA) as reported in Figure 3. We find that the bank PD is historically floating around 0.43%, 

implying 1 bank default every ~ 230 years. Considering the potential impact from banks’ 

management actions leads the bank default probability (PD PMA) to increase to 0.7% on 

average, or 1 bank default every ~ 143 years (Table 5)39. As would be expected, the PD was 

greater – and so the expected freqency of bank defaults higher – during the Covid pandemic 

when the economic outlook was adverse. Amplification mechanisms on a quarterly frequency 

account on average for 1/3 of contribution, although they show material variability over time. 

We do notice that the stability of the system has materially improved since 2015. PD PMA 

deacresed from 1.2% in 2015 to 0.3% in 2024. This finding is consistent with the improvement 

in banks’ capital and liquidity ratios, respectively increasing by 2.5%, 2.8%, and 6.5% in terms 

of CET1, and TIER1 ratios, and cash ratio (Section 4 - Table 2), and also thanks to the reduction 

in CCaR99 estimates passing from £95 billion in 2015 to £79 billion in 2024.  

Figure 3: 1-Year Weighted Average Bank Default Probability 

 
Note: PD refers to average bank default probability pre-management actions, while PD PMA refers to average 

bank PD post-management actions. Bank weights are kept constant across time for comparability purposes. 

Notably, we find that management actions via fire sales deleveraging may also dampen the 

average bank default by 5 bps as shown in 2024. This negative effect is explained by the limited 

impact FS losses have in the tail of the loss distribution over the end of 2023 and 2024q1. 

Hence, in this recent period the deleveraging process seems to work effectively, reducing the 

numerator of the leverage ratio via asset sales faster than the reduction in the denominator 

 
38 We test the average bank PD sensitivity to changes in the CET1 default threshold (set at 7% throughout) in 

Appendix G, Table G5.  
39 The coefficient of variation is 42%.   
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(capital abse) from solvency shocks. This result is consistent with Shin and White (2020)’s 

findings based on the Federal Reserve’s stress test, i.e. banks may improve their post-shock 

leverage ratio, as this depends on many factors such as asset size, initial leverage, and asset 

holdings. 

Table 5: Bank Default Probability Decomposition by Channel  

(Basis Points) 

 
Note: FC channel considers also defaults due to illiquidity. DELTA provides the difference between pre and post 

management actions (PD PMA - PD). Bank weights are kept constant across time for comparability purposes. 

Furthermore, we find that bank runs and funding cost channels (FC) marginally exacerbate the 

average bank PD, by less than 2 bps. Nevertheless, the impact is conditional to a 90-days stress 

horizon and to the realized severity of the funding shocks. By stressing these two factors by 

increasing the stress horizon to 1-year and the funding shock size by 50%, we find that FC 

contribution to the PD PMA may increase by an additional 11 bps in 2015 and 1.5 bps in 2024 

(Table 3G - Appendix G). This sensitivity test corroborates the result that the improvement in 

banks’ liquidity positions (built up of cash reserves) have materially insured the UK banking 

system from material liquidity default events. In the end, the solvency contagion channel (SC) 

shows almost a negligible contribution. Digging into the determinants of banks’ default, Figure 

4 reports the average bank default probability (unweighted) and decompose it by binding 

regulatory constraints. In this respect, we find that a bank is most commonly in default due to 

a simultaneous breach of both minimum CET1 ratio (7%) and leverage ratio (31) minimum 

requirements (PD_CET_LEV). This finding is in line with the complementary relationship 

between capital and leverage ratio found in Pfeifer et al. (2017): the leverage ratio to a certain 

extent mitigates the weaknesses of the capital ratio (model risk, and procyclicality), whereas 

the capital ratio reduces the risk of overweigh risky assets in the portfolio composition.  

Next, we find that CET1 minimum requirements (PD_CET) are more binding in the first part 

of the sample than the leverage ratio (PD_LEV), whereas the opposite effect take place in the 

second part of the sample (post 2018). These results are in line with studies that focus on 

determinants of bank defaults via econometric techniques: big banks’ defaults are affected 

more by insufficient capital buffers as found in Vazquez and Federico (2015). Furthermore, we 

find only a limited contribution from illiquidity-led default, as in line with Hong et al. (2014) 

findings. Moreover, this usually tends to be happening jointly with a breach of CET1 

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 AVG

PD 73 63 33 39 37 58 29 37 30 35 43

FC 1.9 1.8 0.6 0.3 0.7 1.4 0.9 0.3 0.5 0.7 0.9

FS` 42 29 19 25 16 29 41 49 7 -5 25

SC 0.3 0.1 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1

PD PMA 118 94 53 64 55 88 71 87 37 31 70

DELTA 45 31 20 25 17 30 41 49 7 -4 26
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requirements in the first part of the sample consistently with the lower level of banks’ liquidity 

reserves (CASH + HQLA) as presented in Table 4. Last, we compare the unweighted average 

and the weighted average (WPD) described previously. Overall, the two measures are very 

much positively correlated (0.8), with the unweighted average being roughly 40 bps higher 

compared to the weighted one40.  

Figure 4: Average Bank Default Probability (PMA) Decomposition by Default Thresholds 

 
Note: WPD refers to the weighted average default probability.  

In the end, to benchmark our estimates we provide a comparison with market-based probability 

of default retrieved from Eikon data source and based on Starmine Structural Credit Risk (SCR) 

model. Our approach differ from SCR model since the latter relies on a Merton model approach 

and on a firm’s equity price to derive a 1-year default probability41. Figure 5 compares the 

evolution of market-based PD with our model-based estimates and we show that PD estimates 

pre-management actions (the most comparable metric) tend to be very close to the market-

based PD, respectively an average of 0.36% and 0.39% (Table 6)42. Nonetheless, a few material 

differences are visible during periods of high market volatility and uncertainty such as the 

Brexit referendum (2016) and the Pandemic period (2020-2021). Respectively during those 

periods, the market PD index tends to overshoot our PD estimates by 26 and 77 bps consistently 

with a higher sensitivity of market PD to banks’ equity price volatility. Similarly, market PDs 

tend to re-adjust more materially once uncertainty unravels.  

 

 

 
40 Table G4 in Appendix G reports the detailed breakdown.   
41 Starmine Structural Credit Risk Model (SCR) evaluates the equity market’s view of credit risk via StarMine’s 

proprietary extension of the structural default prediction framework introduced by Robert Merton. 
42 We retrieve market-PD estimates for 5 banks out of 7 in our sample given stock market estimates are available 

only for the quoted firms. Consistently, we re-compute our weighted PD indexes matching the same sample of 

banks and by adjusting the vector of bank weights to sum-up to 1. We then weight the market PD by the same 

vector of bank weights to derive the weighted average market-based default probability for the banking sector.   
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Figure 5: Weighted Average Probability of Default Comparison with Market Estimates 

 
Note: Market PD refers to the weighted average bank default probability based on Starmine Structural Credit Risk 

Model (Merton model).  

Overall, our PD index (pre-management actions) is a more stable indicator, capturing the 

increased level of downside risk without overshooting. Notably, our index is constructed 

exploiting a more complete set of information, capturing macro-financial developments via 

quarterly variation of banks’ counterparty probability of default (capturing some degree of 

market impact), and more slow-moving input variables such as banks’ balance sheet 

characteristics and banks’ network of exposures. So, it is more anchored to banks’ 

fundamentals and the structural features of the exposure network.   

Clear evidence of this modelling contribution is shown during the Pandemic period. Our 

CCaR99 measure capturing tail risk developments materially increased by 25% relative to 

2019, but its negative effect on average PD is compensated by a material improvement in 

banks’ capital positions driven by the dividend restriction implemented by the Bank of England 

in April 2020 as response to the pandemic – average CET1 ratio increased from 14.2% to 

15.8% (Table 2). This positive effect on banks’ solvency position and system’s financial 

stability works as an exacerbating factor in the Merton model since it contributes to further 

depress banks’ equity prices relative to other sectors not subject to this policy measure. Our 

result is consistent with findings from Hardy (2021) who shows that bank equity prices fell 

with dividend restriction announcements, but credit default swap (CDS) spreads indicated that 

default risk either fell or was unaffected even in the face of the economic downturn. 

Furthermore, the market PD index tends also to overestimate our PD PMA index by 43 bps at 

the peak of the pandemic (2020). This result is consistent with findings from Majumder (2006), 

who highlights that equity prices are also governed by the irrational market movements, and 

so the price is the result of combined effect of firm-specific factor (fundamentals) and market-

related factors, thereby leading the Merton model to overshoot relative to the firms’ 
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fundamentals. Contrary, during periods of low volatility (uncertainty), our PD PMA index 

tends to be higher by 33 bps on average given it also considers a broader set of risks such as 

feedback and amplification mechanisms. This result is consistent with findings from Nagel and 

Purnanandam (2019), since standard structural models in which the asset volatility is assumed 

to be constant can understate banks’ default risk in good times when asset values are high. 

Moreover, the different sensitivity to change in banks’ solvency positions between the two 

models seem to be evident especially at the beginning of the sample, comparing 2015 estimates 

with 2017. In fact, the difference between our index and market index is the largest in 2015, 

respectively 40 bps (PD) and 90 bps (PD PMA), whereas in 2017 it is at its lowest, 3 bps and 

26 bps, although market-based PD are in both years estimated to be at 0.2%. This material 

decrease in our PD index is consistent within our modelling framework given a material 

improvement in banks’ average capital ratios, which increase by 2.2% (CET1 ratio) and 3% 

(TIER 1 ratio) as well as cash ratio by 3.3% between 2015 and 2017. Contrary, market-based 

PD underestimate banks’ risks in 2015 given it is relatively a good period, whereas materially 

increase during the Brexit referendum (2016), and then gradually re-adjust to historical benign 

estimates in 2017.  

Table 6: Bank Default Probability Decomposition by Channel  

(Basis Points) 

 
Note: Market PD index reports the weighted average PD retrieved from market data based on Starmine Structural 

Credit Risk Model (SCR). DELTA PD (PMA) reports the difference between PD (PMA) and Market PD.   

Source: LSEG Eikon Data source and authors’ calculations.   

Finally, we provide a comparison of our PD indicator with actual data on financial institutions’ 

default rates. Although we acknowledge that these two indicators are not one-to-one 

comparable since the latter are affected also from other mitigating factors such as policy 

interventions which are not included in our estimates, the Standard & Poor (S&P 2024) global 

financial institutions’ 1-year default rate during the pandemic period (2020-21) reached 0.5% 

(versus 0.8% we estimate), whereas in 2015-16 it was close to 1% (versus 1.1%). Moreover, 

the US commercial bank default rate reported by the FDIC (Figure G2 Appendix) between 

2020-21 is close to 0.3%, with an average of 0.25% over the last 10 years. Overall, we can 

argue, keeping in mind the underlying different sample of firms, that our model-based PD 

estimates tend to be higher relative to actual default rates by roughly 20 bps on average. All in 

all, although some differences in the estimated PD levels, which can be reconciled to some 

2015 2016 2017 2018 2019 2020 2021 2022 2023 AVG

PD MARKET 20 77 20 12 16 125 36 25 19 39

PD 60 50 23 26 29 48 24 37 24 36

PD PMA 110 86 46 55 49 81 69 90 63 72

DELTA PD PMA 90 9 26 43 33 -43 33 65 44 33

DELTA PD 40 -26 3 14 13 -77 -12 12 5 -3
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extent and motivated, the microstructural methodology seems to perform well, re-assuring 

about its sound calibration and strengthening the set of results up to here presented. This is a 

key outcome in relation to the existing microstructural balance sheet network literature since 

for the first time such type of models can be back-tested against market-based approaches. This 

is an important step since the value added of our methodology resides in its microstructural 

derivation, that is, modelling each part of the system with endogenous dynamics. Hence the 

methodology can be tested as a policy laboratory in which a prudential policy assessment 

(micro and macro) can be carried out via counterfactual policy exercises as pointed out by 

Aikman et al. (2024). This application will be presented in the next section. 

6 Macroprudential Policy Assessment  

Relying on the methodology as a policy laboratory, we can vary a part of the system to test 

how the output variables change conditional to this exogenous shock. Specifically, a change to 

the regulatory environment can be interpreted as an exogenous policy shock and in turn assess 

its impact on a bank basis or at the level of the system. We have limited the assessment to the 

system perspective (macroprudential) given the confidentiality of the data which does not allow 

us to showcase bank-specific results.  

Policy Target and Tools 

As first step, we can use the weighted average bank PD as the policy maker’s key quantitative 

indicator to track financial stability risk in the banking system. In a similar vein to how 

monetary policy rules are used in research in that domain, for the purposes of experimentation 

we can define a policy target or risk tolerance of the regulator, which can be calibrated as a 

strict target or confidence band. Looking at the estimated PD indicators (Figure 3) and 

excluding the Pandemic period which represents stress conditions (2020-21) and the pre-Brexit 

period (2015-16) in which capital ratios were well below current levels, we can suppose for the 

sake of experimentation that the regulator’s risk tolerance in normal times may float around 

0.5% with some tolerance for values on either side, and in bad times may rise above 1% as 

seen during the pandemic period43.  

Next, given the PD indicators are a direct function of banks’ capital and liquidity ratios - as 

described in Section 3 and in Appendix C - we can identify them as intermediate targets used 

 
43 The exclusion of these two periods is motivated with the following reasons. The initial period (2015-16) is not 

representative given that the first three BoE stress test exercises revealed some capital inadequacies and sizeable 

drawdowns in capital ratios which culminated with recommendations to banks to strengthen their capital positions. 

Similarly, the Pandemic period (2020-21) is not representative of normal risk preferences since in response to this 

extreme shock, the BoE has implemented a dividend restriction crisis tool.  
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to steer the banking system’s average PD. These intermediate targets are endogenously 

modelled and hence can be shocked to assess via counterfactual exercises the impact on the 

average bank PD. From a regulatory perspective, capital and liquidity buffer requirements such 

as the Countercyclical Capital Buffer (CCyB) or Liquidity Coverage Ratio (LCR) are used as 

policy tools by regulators to affect the intermediate targets, dynamically as in the former case 

or statically as in the latter. Other tools such dividend restrictions can be introduced to offset 

sudden shocks (boosting capital via the retained earnings channel) more promptly than 

conventional tools like the CCyB which has an implementation lag of one year between the 

announcement date and its mandatory compliance. Furthermore, during a period of high 

uncertainty and capital market disruption, rising capital (bank capital channel) by issuing new 

shares may become too costly. Hence, banks may instead reduce lending to meet regulatory 

capital requirements thereby producing real negative effects on consumption and investment 

(Van den Heuvel, 2002). 

Accordingly, we perform two exploratory counterfactual policy exercises showcasing 

respectively: i) the role and impact of a dividend restrictions; and ii) a macroprudential exercise 

for assessing the calibration of banks’ capital requirement.  

6.1 Dividend Restrictions  

This is a tool which has been widely used by central banks (BOE, ECB) during the exceptional 

circumstances triggered by the 2020-21 Pandemic (Hardy, 2021; Marsh, 2023). It had a 

material impact on banks’ capital base measured as CET1 and TIER1 capital increase over this 

period, respectively passing from 14.2% and 17.1% in Q1-2020 to 15.8% and 18.9% in 2021. 

Although it is evident that banks’ solvency position has materially improved given the 

improvement in the intermediate policy targets, it is not straightforward for a policy maker to 

quantify the impact on the overall banking system’s stability - ultimate policy target. In theory, 

a policy maker may also decide to constrain dividend payouts to be a share of total expected 

payouts and this decision/assessment requires estimating the impact on the ultimate policy 

target and a well-defined risk tolerance. In this respect, our framework provides those bearings 

and via counterfactual policy exercise can shed light on this trade-off. Specifically, we intend 

to measure the impact from a mechanical reduction of banks’ capital base (what if scenario), 

and the endogenous F&A effects that banks’ management action may provoke44. Hence, we 

test a what if scenario in which no dividend restrictions are implemented, thereby keeping the 

 
44 The methodology models endogenous effects stemming from a reduced distant to solvency distress thresholds, 

which affect banks’ management actions and in turn the severity of amplification mechanisms relative to the 

realized outcome. 
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level of banks’ capital base (CET1 and TIER1) equal to 2020q1 till end of 2021q4. Thus, we 

quantify by how much this tool has contributed to reduce the weighted average bank default 

probability assuming all else being equal45.   

Figure 6 reports the weighted average bank default probability under this counterfactual 

scenario without (PD NO DR) and with banks’ management actions (PD PMA NO DR). We 

find that the average bank default probability without the implementation of dividend 

restrictions would have been on average higher by roughly 32 bps over 2020 and 2021. This 

finding is in line with literature on effects of dividend restrictions that focused on Covid-19 

period in particular Dautović et al. (2023) and Acosta-Smith et al. (2023).  

Figure 6: Impact of Dividend Restrictions on Banks’ Default Probability 

 
Note: NO DR refers to the counterfactual simulation as if no Dividend Restrictions were implemented.  

Specifically, as reported in Table 7, we quantify that the mechanical impact from a lower 

capital base contributes to increase the average bank default probability (pre management 

actions) by 14 bps (DELTA PD). On top of this, the change in the capital base makes also 

banks to be more reactive to shocks, requiring them to deleverage more and experience more 

severe funding shocks given the distress thresholds are more likely to become binding. In this 

respect, we estimate that these endogenous effects contribute to increase the average bank PD 

post management actions by an additional 18 bps, on average. Overall, we can state that the 

dividend restrictions crisis tool implemented by the regulator in 2020q1 was extremely 

effective in keeping banking stability under control and close to the hypothetical  risk tolerance 

level we have assumed for the regulator during this exceptional stress period. Benefits were 

 
45 We acknowledge that we cannot exclude the positive endogenous effects that the DR had on mitigating risks in 

the real economy since it helped to sustain bank lending to corporates (Hardy, 2021). Hence, we can consider our 

estimates to be conservative, the positive effects would be even greater. This is also the reason why it was 

implemented given that rising capital during a downturn can be costly and also unfeasible given markets and 

investors may be less willing to provide equity injections.  
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not limited to the microprudential sphere of individual banks’ PD, but also played an effective 

macroprudential role by curbing potential endogenous spillovers46.  

Table 7: Dividend Restrictions and Bank Default Probability (Basis Points) 

 
Note: DELTA PD and DELTA PD PMA refer to the difference between baseline estimates (Table 

5) and counterfactuals based on no dividend restrictions (DR).  

6.2 Macroprudential Stress Testing and Capital Calibration 

Lastly, we showcase how the methodology can be used as a macroprudential stress testing 

capital calibration tool. Up to here, we have tested the methodology conditional to historical 

central-case macro-financial conditions realized over the period 2015-2024. Now we perform 

a stress testing exercise in which macro-financial conditions materially deteriorates over 1-year 

horizon in line with the Bank of England 2024 adverse scenario (BOE 2024). This stress 

scenario is calibrated to approximate the 99th percentile of the historical distribution of macro-

financial conditions jointly with rising interest rates thereby resembling a severe event. 

Consistently, via satellite credit risk models we translate this change in macro-financial 

conditions into a change in banks’ counterparty PDs - key inputs of the methodology47 - 

keeping all else equal to 2024q1 snapshot date in terms of banks’ portfolio allocation and 

balance sheet positions. Next, we re-estimate the model and assess the change in the average 

bank default probability over 1-year horizon (up to 2025q1).  

Figure 8 shows that the bank average PD would increase from 31 bps in 2024q1 to 2.5% in 

2025q1 (after 1 year) driven by core PD ST estimates stemming from credit and market risk 

losses (without management actions - PMA). Nonetheless, amplifying effects from banks’ 

management actions (proxy by the gap between PD ST and PD PMA ST) become material (33 

bps increase or 15%) especially at the peak of the stress in Q1-202548. Specifically, the funding 

cost channel and the illiquidity channel become more relevant than baseline estimates in Q1-

 
46 These estimates are conservative since they don’t capture the lower level of lending and in turn the higher 

economic risk the no policy scenario would have entailed.   
47 For a better interpretability of the results, we keep exposure-specific loss-given-default parameters (LGD) 

unchanged relative to Q1-2024 (without stress). Moreover, we retain the same correlation structure used for the 

entire analysis. Both sets of parameters according to the credit risk literature are supposed to increase during a 

stress period. Hence, our estimates may be judged as non-conservative.    
48 We estimate that CaR99 total losses reach £160 billion in Q1-2025 (£34 bn from PMA) relative to £79 billion 

estimated pre-stress in Q1-2024 (£19 billion from PMA).  

20.Q2 20.Q3 20.Q4 21.Q1 21.Q2 21.Q3 21.Q4 AVG

PD DR 78 71 65 44 38 41 44 54

PD 63 57 46 33 29 27 29 40

DELTA PD 15 14 19 11 9 14 15 14

PD PMA DR 47 45 37 62 61 57 55 52

PD PMA 32 21 18 53 44 31 38 34

DELTA PD PMA 15 23 19 9 17 26 17 18

DELTA PD TOT 30 38 38 20 26 40 32 32
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2024, contributing to the increase in the bank average PD PMA ST by 26 bps. Furthermore, 

we estimate that at the peak of the stress (Q1-2025) the expected liquidity outflows for VaR99 

(LaR99) would reach £850 billion, in comparison to £185 billion in Q1-2024. This estimate is 

consistent with the amount of liquidity outflows (£875 billion) assumed in the LCR calibration 

for the same set of banks as of Q1-2024. Contrary, the fire-sales channel seems to play a smaller 

role compared to liquidity-solvency spillovers thanks to the low-risk composition (HQLA ~ 

44% of securities) of banks’ security portfolio as of 2024q1 (as shown in Section 4)49.  

In this respect, the bank average PD may increase under the stress scenario well above the 

regulator’s risk tolerance in normal times and much beyond the levels experienced during the 

pandemic period. During such stress conditions, the regulator may be willing to accept 

temporarily a higher-level of systemic risk in the banking system, depending on its risk 

tolerance, in order to support continued lending to creditworthy households and businesses. Or 

the policymaker may seek to take action to reduce the probability of default, for example by 

introducing dividend restrictions. We can assess what would be the impact of an associated 

homogeneous increase in banks’ core capital on the average bank default probability over the 

stress horizon.  

Figure 8: Weighted Average Probability of Default - Adverse Scenario  

 
Note: PD ST and PD PMA ST refer to the weighted average bank PD estimates conditional to the adverse scenario.  

Figure 9 shows that a higher capital base (CET1 and TIER1 capital) by 50, 100, 150 or 200 

basis points of RWAs (increasing the distant to default) may reduce the average bank PD 

respectively from 2.5% to 1.9%, 1.5%, 1.3% and 1% at the peak of the stress. Hence, dividend 

restrictions of similar size to the one implemented during the pandemic (i.e ~ 200 bps increase 

in the capital base) would be effective in bringing the average bank PD close to 1%. The timing 

 
49 Interestingly, the model dynamics shows that FS channel would both increase the average bank default 

probability at the peak of the stress (Q1-2025) by 15 bps in the first round and reduce it by 8 bps in the second 

round, resulting in a net positive effect of 7 bps. This net impact would have been larger if we had used a more 

equity-based risky portfolio allocation than the current one.  



42 
 

of a DR implementation and the severity of the stress do affect the size of banks’ potential 

retained earnings making its precise calibration a difficult task. Notably, we find that this 

impact is non-linear with decreasing marginal returns from increasing banks’ capital base 

beyond 50 bps. In fact, a capital injection of 50 bps, passing from 0 to 50 bps, would decrease 

the average bank PD by 24%, and further (additional 50 bps increase) passing from 50 bps to 

100 bps by 19%, and by 18% when we move from 100 bps to 150 bps (and similarly from 150 

bps to 200 bps). This uplift in the capital base can be also achieved through a combination of 

policies aiming to strengthen banks’ capital positions in advance of the stress (Van Oordt, 

2023). For instance, the regulator may opt to increase banks’ capital buffers by 50 bps so as to 

push up banks’ capital over time. This higher capital base would have a limited positive effect 

on reducing banks’ PDs under normal conditions as of 2024q1 (1 to 5 bps), although it may be 

optimal when severe stress conditions materialize.  

Figure 9: Weighted Average Probability of Default - Stress Scenario and Capital Calibration 

 
Note: PD PMA ST refer to the weighted average bank PD estimates conditional to the adverse scenario. Moreover, 

the PD PMA ST 50/100/150/200 refer to the weighted average bank PD estimates under the adverse scenario 

adjusted by a capital increase of X basis points. Green dotted bands proxy regulator’s risk tolerance level, 

respectively in good and bad times. 

To avoid acting procyclically a countercyclical policymaker should set capital in normal times 

so as the PD would remain within its risk tolerance even in stress scenarios. However, it faces 

uncertainty over how severe a stress scenario may be, and if it sets capital too high in normal 

times, it may restrain the banking system from optimally lending to the real economy and so 

potentially tightening the financial and the economic cycle in undesirable way, leading to the 

so called “stability of the graveyard” in the absence of shocks. Hence, capital buffer calibration 

policies and dividend restriction measures are indeed good complementary tools, the former 

providing ex ante resilience to a scenario up to a particular severity and the latter leaving space 

to the regulator to affect its policy target (AVG PD) given the changing macro-financial 

conditions when needed, thereby avoiding the negative effects of a too tight capital policy 

during normal times.  

Regulator’s Risk Tolerance (Bad Times) 

Regulator’s Risk Tolerance (Good Times) 
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Concluding Remarks 

This paper develops a microstructural methodology modelling jointly solvency and liquidity 

risks and their interactions in the banking system to provide a macroprudential assessment of 

systemic risk in the banking system. Concerns have been raised over the lack of regulatory 

stress tests that capture liquidity risk and its spillovers to the solvency dimension given the 

period of banking distress in the US in 2013. In this paper, we test and back-test our 

methodology providing a risk assessment in terms of bank default probability and its drivers 

over a 10-year period and on a quarterly basis for the UK banking system.  

Against this background, we show that funding risk correlates materially on a portfolio level 

with solvency risk given the set of banks’ borrowers and funding sources do overlap, thereby 

transmitting shocks on both sides of the balance sheet simultaneously. Furthermore, when we 

introduce banks’ behavioural responses and potential market reactions, this relationship further 

tightens, creating the conditions for potentially harmful reinforcing amplification mechanisms.  

Next, we find that in recent years the UK banking system has had enough capital and liquidity 

to withstand and absorb potential severe shocks, thereby avoiding severe feedback-loops 

between these two dimensions. We show that this finding holds even under stress conditions 

experienced during the covid pandemic as well as under a hypothetical GFC-type stress 

scenario, although in the latter case the impact increases especially due to liquidity-driven 

solvency spillovers. In this respect, we highlight that mitigating effects stem from the material 

build-up in banks’ cash reserves and improvement in banks’ capital ratios between 2015 and 

2024, the period of analysis. These two mitigating factors combined with banks’ de-risking in 

terms of portfolio composition have reduced the severity of potential credit and market risk 

losses in the tail as well as feedback and amplification mechanisms. 

Finally, we showcase the positive impact the introduction of dividend restrictions had at 

keeping financial stability risks under control when macro-financial conditions deteriorated 

sharply with the unfolding of the pandemic. This tool has indeed been proved to be an effective 

crisis tool with complementary benefits to other more conventional measures such as the 

countercyclical capital buffer. Overall, the methodology can be used as a policy laboratory to 

monitor the stability of the banking system in real time, assess the effectiveness of policy 

changes as well as their calibration according to a measurable policy target - average bank 

default probability - and conditional to a regulator’s risk tolerance.  
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Appendix A - Correlated Firm Default 

 

To model counterparty default events we rely on a Monte Carlo sampling method modelling 

the dependence structure of counterparty defaults across sectors and countries via a Gaussian 

copula model (Glasserman, 2004; Glasserman and Li, 2005). Correlated default events as 

discussed in Acemoglu et al. (2012, 2015) as well as in Gabaix (2011) may be generated via 
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intersectoral input-output linkages (supply chain spillovers) that is, via common country and 

sector-specific financial and macro shocks. This interdependence among obligors’ default is 

introduced through a multivariate normal vector (𝜉1, . . . , 𝜉𝑗) of latent variables. Each default 

indicator is represented as: 

𝑌𝑗 =  1{𝜉𝑗 >  𝑥𝑗}, 𝑗 =  1, . . . , 𝐽. 

The threshold 𝑥𝑗 represents the default boundary (Merton, 1974), which is matched to the 

marginal default probability of obligor j (𝑃𝐷𝑗). 𝜉𝑗 follow a standard normal distribution and 

we set 𝑥𝑗 =  𝜑−1(1 − 𝑃𝐷𝑗), where 𝜑 is the cumulative normal distribution, and the correlations 

among the 𝜉𝑗 determine the dependence among the 𝑌𝑗 as follows: 

𝑃(𝑌𝑗 = 1) = 𝑃(𝜉𝑗 >  𝑥𝑗) = 𝑃(𝜉𝑗 >  𝜑−1(1 − 𝑃𝐷𝑗) = 𝑃𝐷𝑗 

To derive the set of obligors’ default indicator 𝑌𝑗, we estimate the correlation structure of 𝜉𝑗 

which estimated using historical probability of defaults by country-sector pair following Covi 

et al, (2022), Covi et. (2024). In this respect, we estimate a correlation structure or dependence 

structure of corporate defaults across all sector (4) and country (134) pairs. We estimate this 

dependence structure as time-invariant correlation structure of probability of defaults over the 

period Q1-2015 to Q1-2024.  Figure A1 summarizes the distribution of correlation coefficients 

for all sector-country pairs, which resembles a normal distribution, with a positive 

mean/median coefficient close 0.014. This feature implies that shocks to corporates (default 

events) can be to the same extent positive or negative correlated, reflecting the heterogeneous 

effects of macro and financial shocks across sectors and countries.  

Figure A1: Obligors’ Dependence Structure for Sector-Country Pairs  

 
Source: Supervisory COREP Data C09.02 

 

Appendix B – Balance Sheet Accounting 

Starting balance sheets (S=0) are collected from stress testing and supervisory COREP and 

FINREP templates. Step1 (S=1) consists in deriving the distribution of a firm’s balance sheet 

(across n simulations) conditional to the estimated stochastic profit and loss shocks (𝑃𝐿𝑖,𝑛,𝑡
𝐸𝐶 ). 

In this respect, we adjust banks’ risk-weighted assets (𝑅𝑊𝐴𝑖,𝑛,𝑡
1 ) by the P&L shock (𝑃𝐿𝑖,𝑛,𝑡

𝐸𝐶 ) 
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which is proxied by an average bank/time-specific risk weight calculated as (
𝑅𝑊𝐴𝑖,𝑡

0

𝑇𝐴𝑖,𝑡
0 )50. 

Subsequently, we update the networks of loan (𝐿𝑖,𝑗,𝑛,𝑡
1 ), security (𝑆𝑖,𝑗,𝑛,𝑡

1 ) and funding exposures 

(𝐹𝑖,𝑗,𝑛,𝑡
1 ). 

Post Initial Shock - Block 1 

𝑇𝐴𝑖,𝑛,𝑡
1 = 𝑇𝐴𝑖,𝑡

0 + 𝑃𝐿𝑖,𝑛,𝑡    ;    𝑅𝑊𝐴𝑖,𝑛,𝑡
1 = 𝑅𝑊𝐴𝑖,𝑡

0 + (𝑃𝐿𝑖,𝑛,𝑡 ∗
𝑅𝑊𝐴𝑖,𝑡

0

𝑇𝐴𝑖,𝑡
0 ) 

𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
1 = 𝐶𝑎𝑠ℎ𝑖,𝑡

0 − 𝐹𝑖,𝑛,𝑡   ,     𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑛,𝑡
1 = 𝐶𝑎𝑠ℎ_𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑡   −  𝐹𝑖,𝑛,𝑡   

𝐶𝐸𝑇1𝑖,𝑛,𝑡
1 = 𝐶𝐸𝑇1𝑖,𝑡

0 + 𝑃𝐿𝑖,𝑛,𝑡      ,     𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡
1 =

𝐶𝐸𝑇1𝑖,𝑛,𝑡
1

𝑅𝑊𝐴𝑖,𝑛,𝑡
1                

 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
1 = 𝑇𝐼𝐸𝑅1𝑖,𝑡

0 + 𝑃𝐿𝑖,𝑛,𝑡    ,    𝐿𝑅𝑖,𝑛,𝑡
1 =   

𝑇𝐴𝑖,𝑛,𝑡
1 − 𝐶𝐴𝑆𝐻𝑖,𝑛,𝑡

1

 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
1  

𝑁𝑇𝑊𝑖,𝑗,𝑛,𝑡
1 = 𝑁𝑇𝑊𝑖,𝑗,𝑡  −  𝑁𝑇𝑊𝑖,𝑗,𝑡|𝐶𝑃𝑖,𝑛,𝑡 = 1 𝑤𝑖𝑡ℎ 𝑁𝑇𝑊 ∈ [𝐿𝑜𝑎𝑛, 𝐹𝑢𝑛𝑑𝑖𝑛𝑔, 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦]    

Post Funding Cost - Block 2 

𝑇𝐴𝑖,𝑛,𝑡
3 = 𝑇𝐴𝑖,𝑛,𝑡

1 +  (𝐵𝑖,𝑛,𝑡
𝑆 +     𝐵𝑖,𝑛,𝑡

𝑈 ) −  𝐹𝐶𝑖,𝑛,𝑡   ,     𝑅𝑊𝐴𝑖,𝑛,𝑡
3  =  𝑅𝑊𝐴𝑖,𝑛,𝑡

1  

𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
2 = 𝐶𝑎𝑠ℎ𝑖,𝑡 −  𝐹𝑖,𝑛,𝑡

2       ,     𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
3 = 𝐶𝑎𝑠ℎ𝑖,𝑡 −  𝐹𝑖,𝑛,𝑡

2 + (𝐵𝑖,𝑛,𝑡
𝑆 +     𝐵𝑖,𝑛,𝑡

𝑈 ) − 𝐹𝐶𝑖,𝑛,𝑡   

𝐶𝐸𝑇1𝑖,𝑛,𝑡
3 = 𝐶𝐸𝑇1𝑖,𝑡

1 −  𝐹𝐶𝑖,𝑛,𝑡     ,      𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡
3 =

𝐶𝐸𝑇1𝑖,𝑛,𝑡
3

𝑅𝑊𝐴𝑖,𝑛,𝑡
3   

𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
3 = 𝑇𝐼𝐸𝑅1𝑖,𝑡

1 −  𝐹𝐶𝑖,𝑛,𝑡    ,    𝐿𝑅𝑖,𝑛,𝑡
1 =   

𝑇𝐴𝑖,𝑛,𝑡
1 − 𝐶𝐴𝑆𝐻𝑖,𝑛,𝑡

1

 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
1  

𝑆𝐸𝐶𝑖,𝑛,𝑡
3 = 𝑆𝐸𝐶𝑖,𝑛,𝑡

1 −  𝐵𝑖,𝑛,𝑡
𝑆     ,    𝑆𝐸𝐶_𝐻𝑄𝐿𝐴𝑖,𝑛,𝑡

3 = 𝐻𝑄𝐿𝐴𝑖,𝑛,𝑡
1 −  𝐵𝑖,𝑛,𝑡

𝑆   

Post Fire Sale Shock - Block 3 

𝑇𝐴𝑖,𝑛,𝑡
4 = 𝑇𝐴𝑖,𝑛,𝑡

3 − 𝐹𝑆𝑖,𝑛,𝑡      

𝑅𝑊𝐴𝑖,𝑛,𝑡
4 =  𝑅𝑊𝐴𝑖,𝑛,𝑡

3 − (𝑄𝑖,𝑛,𝑡
∗∗∗ ∗

𝑅𝑊𝐴𝑖,𝑡
0

𝑇𝐴𝑖,𝑡
0 ∗ (1 −  𝐻𝑄𝐿𝐴_𝑠ℎ𝑎𝑟𝑒𝑖,𝑡

3 )) 

 
50 This assumption leads us to conservative regulatory ratio estimates (CET1r) since the methodology by 

construction overestimate post shock RWAs especially in the tail of P&L distribution. More risky obligors (with 

high probability of default) default more often compared to less risky obligors (with low probability of defaults), 

thereby determining this overestimation RWA bias. Nonetheless, in this way we address the critique posed by 

Acharya et al. (2014) which highlight that banks may underestimate their risk-weights given the average risk 

weight appears unconnected with their actual risk.  
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𝐶𝐸𝑇1𝑖,𝑛,𝑡
3 = 𝐶𝐸𝑇1𝑖,𝑛,𝑡

1 −  𝐹𝑆𝑖,𝑛,𝑡     ,      𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡
3 =

𝐶𝐸𝑇1𝑖,𝑛,𝑡
3

𝑅𝑊𝐴𝑖,𝑛,𝑡
3   

𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
3 = 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡

1 − 𝐹𝑆𝑖,𝑛,𝑡 ,    𝐿𝑅𝑖,𝑛,𝑡
3 =   

𝑇𝐴𝑖,𝑛,𝑡
3 − 𝐶𝐴𝑆𝐻𝑖,𝑛,𝑡

3

 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
3  

𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡
4 =  𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡

3 + (𝑄𝑖,𝑛,𝑡
∗∗∗ − 𝐹𝑆𝑖,𝑛,𝑡) 

𝐿𝑅𝑖,𝑛,𝑡
4 =   

𝑇𝐴𝑖,𝑛,𝑡
4 −  𝐶𝑎𝑠ℎ𝑖,𝑛,𝑡

4

 𝑇𝐼𝐸𝑅1𝑖,𝑛,𝑡
4  

𝑆𝐸𝐶𝑖,𝑛,𝑡
4 =  𝑆𝐸𝐶𝑖,𝑛,𝑡

3 − (𝑄𝑖,𝑛,𝑡
∗∗∗ + 𝐹𝑆𝑖,𝑛,𝑡)  

𝑆𝐸𝐶_𝐻𝑄𝐿𝐴𝑖,𝑛,𝑡
4 = 𝐻𝑄𝐿𝐴𝑖,𝑛,𝑡

3 − (𝑄𝑖,𝑛,𝑡
∗∗∗|𝐻𝑄𝐿𝐴

+  𝐹𝑆𝑖,𝑛,𝑡
𝐻𝑄𝐿𝐴

)    

Appendix C - Regulatory Constraints 

𝑆𝑜𝑙𝑣𝑒𝑛𝑐𝑦 𝐷𝑒𝑓𝑎𝑢𝑙𝑡: 𝐷𝐹𝑖,𝑛,𝑡
𝐶𝐸𝑇1 = 1 𝑖𝑓 𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡 < 𝐶𝐸𝑇1𝑟 𝑀𝑖𝑛𝑖𝑚𝑎   

Where: 𝐶𝐸𝑇1𝑟 𝑀𝑖𝑛𝑖𝑚𝑎 = 6.5% 𝑅𝑊𝐴𝑠  

𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑓𝑎𝑢𝑙𝑡: 𝐷𝐹𝑖,𝑛,𝑡
𝐿𝐸𝑉 = 1 𝑖𝑓 𝐿𝑅𝑖,𝑛,𝑡 < 𝐿𝑅 𝑀𝑖𝑛𝑖𝑚𝑎   

Where: 𝐿𝑅 𝑀𝑖𝑛𝑖𝑚𝑎 = 31 ∗ 𝑇𝐼𝐸𝑅1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙  

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝐷𝑒𝑓𝑎𝑢𝑙𝑡: 𝐷𝐹𝑖,𝑛,𝑡
𝐿𝐼𝑄

= 1 𝑖𝑓  𝐿𝐼𝑄𝑖,𝑛,𝑡 =  𝐶𝐴𝑆𝐻𝑖,𝑛,𝑡 + 𝐻𝑄𝐿𝐴𝑖,𝑛,𝑡 < 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑁𝑒𝑒𝑑𝑠𝑖,𝑛,𝑡   

𝑆𝑜𝑙𝑣𝑒𝑛𝑐𝑦 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠: 𝐷𝑆𝑖,𝑛,𝑡
𝐶𝐸𝑇1 = 1 𝑖𝑓 𝐶𝐸𝑇1𝑟 𝑀𝑖𝑛𝑖𝑚𝑎 < 𝐶𝐸𝑇1𝑟𝑖,𝑛,𝑡 < 𝐶𝐸𝑇1 𝐵𝑢𝑓𝑓𝑒𝑟   

Where: 𝐶𝐸𝑇1 𝐵𝑢𝑓𝑓𝑒𝑟  = 11% 𝑅𝑊𝐴𝑠 

𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠: 𝐷𝑆𝑖,𝑛,𝑡
𝐿𝐸𝑉 = 1 𝑖𝑓 𝐿𝑅 𝑀𝑖𝑛𝑖𝑚𝑎 <  𝐿𝑅𝑖,𝑛,𝑡 < 𝐿𝑅 𝐵𝑢𝑓𝑓𝑒𝑟  

Where: 𝐿𝑅 𝑀𝑖𝑛𝑖𝑚𝑎 = 25 ∗ 𝑇𝐼𝐸𝑅1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙  

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠: 𝐷𝑆𝑖,𝑛,𝑡
𝐿𝐼𝑄 = 1 𝑖𝑓  𝐶𝐴𝑆𝐻 𝐵𝑢𝑓𝑓𝑒𝑟𝑖,𝑛,𝑡 < 0  &  𝐷𝐹𝑖,𝑛,𝑡

𝐿𝐼𝑄 = 0  

 

Appendix D –Supply and Demand of Funding 

 

Supply 

As the system supply depends on the severity of each realisation, the initial values of 𝑎𝑖,𝑡
(𝑢𝑛)𝑠𝑒𝑐

 

in equation (3c) are modelled based on rescaling the system funding shock that is given in each 

quarter and scenario, such that is in line with previously mentioned empirical findings: in case 
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of a negative shock, the volume on secured market increases, whereas opposite is true on the 

unsecured market. Since both the supply and demand vary at each realisation, depending on 

bank and system-specific characteristics, and need to intersect in order to obtain optimal 

quantities, the available supply will be different compared to the realised one. Table D.1. shows 

this for the case of secured market, whereas the unsecured one is shown in Table D.2. 

Table D.1. Possible and realised secured supply, in billion £ 

date 
Possible 

min sec 1% 2.50% 5% 50% 95% 97.50% 99% max sec 

31-Dec-19 80.00 80.02 80.03 80.14 80.51 85.03 88.02 95.00 130.00 

31-Mar-20 80.00 80.02 80.03 80.14 80.53 87.35 91.52 97.52 130.00 

30-Jun-20 80.00 80.02 80.03 80.14 80.65 86.35 90.52 96.19 130.00 

30-Sep-20 80.00 80.02 80.03 80.14 80.64 86.31 90.47 95.69 130.00 

31-Dec-20 80.00 80.02 80.03 80.15 80.68 87.16 91.33 97.83 130.00 

31-Mar-21 80.00 80.02 80.03 80.14 80.64 86.67 90.82 98.14 130.00 

30-Jun-21 80.00 80.02 80.02 80.13 80.53 86.51 90.36 97.13 130.00 

30-Sep-21 80.00 80.02 80.13 80.15 80.68 87.48 91.98 98.19 130.00 

31-Dec-21 80.00 80.02 80.03 80.14 80.68 87.33 91.98 98.31 130.00 

31-Mar-22 80.00 80.02 80.03 80.15 80.64 86.31 90.64 96.64 130.00 

30-Jun-22 80.00 80.03 80.14 80.15 80.53 85.85 90.17 96.15 130.00 

30-Sep-22 80.00 80.02 80.14 80.15 80.66 86.18 89.97 94.63 130.00 

31-Dec-22 80.00 80.03 80.14 80.16 80.80 86.19 90.85 95.99 130.00 

31-Mar-23 80.00 80.02 80.14 80.15 80.69 86.35 90.36 95.51 130.00 

30-Jun-23 80.00 80.03 80.14 80.15 80.67 85.66 89.16 94.66 130.00 

30-Sep-23 80.00 80.02 80.14 80.15 80.81 86.83 90.85 98.15 130.00 

31-Dec-23 80.00 80.03 80.14 80.15 80.69 85.65 88.85 94.87 130.00 

31-Mar-24 80.00 80.03 80.14 80.16 80.82 86.14 90.02 96.50 130.00 

                   

date 
Realised 

min sec 1% 2.50% 5% 50% 95% 97.50% 99% max sec 

31-Dec-19 0.05 0.21 0.28 0.37 1.85 17.21 27.21 50.75 130.00 

31-Mar-20 0.08 0.28 0.38 0.51 2.32 28.90 45.26 68.53 130.00 

30-Jun-20 0.08 0.25 0.34 0.46 2.28 22.91 37.87 58.25 130.00 

30-Sep-20 0.03 0.21 0.29 0.40 2.07 21.28 35.34 53.32 130.00 

31-Dec-20 0.07 0.26 0.36 0.47 2.50 24.93 39.43 61.70 130.00 

31-Mar-21 0.04 0.22 0.29 0.37 2.22 24.36 39.41 65.65 130.00 

30-Jun-21 0.05 0.19 0.25 0.34 2.06 23.03 36.65 60.03 130.00 

30-Sep-21 0.04 0.17 0.22 0.29 1.52 16.11 25.81 38.88 98.81 

31-Dec-21 0.07 0.17 0.23 0.30 1.58 15.81 25.79 38.95 98.59 

31-Mar-22 0.07 0.24 0.32 0.41 1.93 19.28 32.53 50.89 130.00 

30-Jun-22 0.06 0.30 0.39 0.50 2.15 21.75 37.60 59.61 130.00 

30-Sep-22 0.11 0.28 0.38 0.49 2.08 18.92 30.19 44.32 130.00 

31-Dec-22 0.05 0.23 0.31 0.41 1.98 16.03 28.01 41.18 119.71 

31-Mar-23 0.07 0.22 0.29 0.39 1.86 15.90 25.88 38.60 115.11 

30-Jun-23 0.04 0.19 0.26 0.34 1.58 13.18 21.25 34.01 107.10 

30-Sep-23 0.07 0.19 0.25 0.34 1.70 14.26 22.68 37.39 95.15 

31-Dec-23 0.05 0.21 0.28 0.36 1.75 13.42 21.09 35.44 109.69 

31-Mar-24 0.04 0.21 0.27 0.34 1.68 12.48 20.56 33.73 93.10 

 

 

 

 

 



54 
 

Table D.2. Possible and realised unsecured supply, in billion £ 

date 
Possible 

max unsec 1% 2.50% 5% 50% 95% 97.50% 99% min unsec 

31-Dec-19 50.11 47.98 47.97 47.95 47.88 46.76 46.08 42.68 23.00 

31-Mar-20 50.11 47.98 47.96 48.00 47.86 46.22 45.23 41.52 23.00 

30-Jun-20 50.11 47.98 47.96 48.00 47.84 46.47 45.48 42.09 23.00 

30-Sep-20 50.11 47.97 47.96 48.00 47.85 46.51 45.49 42.38 23.00 

31-Dec-20 50.11 47.97 47.96 47.99 47.85 46.28 45.29 41.36 23.00 

31-Mar-21 50.11 47.98 47.97 47.95 47.85 46.42 45.40 42.30 23.00 

30-Jun-21 50.11 47.98 47.97 47.96 47.86 46.43 45.50 42.27 23.00 

30-Sep-21 50.11 47.97 47.96 47.99 47.86 46.22 45.12 42.11 23.00 

31-Dec-21 50.11 47.98 47.96 48.00 47.85 46.24 45.12 41.60 23.00 

31-Mar-22 50.11 47.97 47.96 47.99 47.85 46.51 45.45 42.17 23.00 

30-Jun-22 50.11 47.97 47.95 47.99 47.87 46.61 45.57 42.28 23.00 

30-Sep-22 50.11 47.97 47.95 47.99 47.83 46.50 45.64 42.24 23.00 

31-Dec-22 50.11 47.97 48.00 47.98 47.82 46.49 45.42 42.25 23.00 

31-Mar-23 50.11 47.97 47.95 47.99 47.84 46.46 45.50 42.67 23.00 

30-Jun-23 50.11 47.97 47.95 47.99 47.82 46.62 45.83 43.48 23.00 

30-Sep-23 50.11 47.97 47.96 47.99 47.81 46.34 45.37 41.97 23.00 

31-Dec-23 50.11 47.97 47.95 47.99 47.84 46.63 45.87 43.21 23.00 

31-Mar-24 50.11 47.96 48.00 47.98 47.80 46.55 45.57 42.92 23.00 

                    

date 
Realised 

min unsec 1% 2.50% 5% 50% 95% 97.50% 99% max unsec 

31-Dec-19 0.02 0.11 0.15 0.20 1.00 9.27 14.61 26.47 42.06 

31-Mar-20 0.04 0.15 0.21 0.27 1.25 15.56 23.92 35.88 42.76 

30-Jun-20 0.04 0.14 0.18 0.25 1.23 12.34 20.06 30.37 42.41 

30-Sep-20 0.02 0.12 0.16 0.21 1.12 11.46 18.71 27.77 42.50 

31-Dec-20 0.04 0.14 0.19 0.25 1.35 13.42 20.81 32.21 42.23 

31-Mar-21 0.02 0.12 0.15 0.20 1.19 13.12 20.86 34.34 42.63 

30-Jun-21 0.03 0.10 0.14 0.18 1.11 12.40 19.42 31.28 42.31 

30-Sep-21 0.02 0.09 0.12 0.16 0.82 8.68 13.40 19.93 38.97 

31-Dec-21 0.04 0.09 0.12 0.16 0.85 8.51 13.39 19.97 38.92 

31-Mar-22 0.04 0.13 0.17 0.22 1.04 10.38 17.18 26.36 41.67 

30-Jun-22 0.03 0.16 0.21 0.27 1.16 11.71 19.95 31.11 42.52 

30-Sep-22 0.06 0.15 0.21 0.26 1.12 10.19 16.00 23.06 41.45 

31-Dec-22 0.03 0.12 0.17 0.22 1.07 8.63 14.71 21.20 40.55 

31-Mar-23 0.04 0.12 0.16 0.21 1.00 8.56 13.62 19.87 40.07 

30-Jun-23 0.02 0.10 0.14 0.18 0.85 7.10 11.27 17.50 39.51 

30-Sep-23 0.04 0.10 0.14 0.18 0.91 7.68 11.84 19.13 39.31 

31-Dec-23 0.03 0.11 0.15 0.19 0.94 7.22 11.22 18.24 39.74 

31-Mar-24 0.02 0.11 0.14 0.19 0.90 6.72 10.80 17.13 38.12 

 

Finally, table D.3. shows how the share of unsecured supply decreases as the size of the shock 

increases, which is described in the main text. Our modelling approach captures this feature.  

 

Table D.3. Share of unsecured demand 

date 
Possible unsecured share in % 

max unsec 1% 2.50% 5% 50% 95% 97.50% 99% min unsec 

31-Dec-19 38.51 37.48 37.47 37.44 37.29 35.48 34.36 31.00 15.03 

31-Mar-20 38.51 37.48 37.47 37.46 37.28 34.60 33.07 29.86 15.03 

30-Jun-20 38.51 37.48 37.47 37.46 37.24 34.99 33.44 30.44 15.03 

30-Sep-20 38.51 37.48 37.47 37.46 37.24 35.02 33.46 30.69 15.03 

31-Dec-20 38.51 37.48 37.47 37.45 37.23 34.68 33.15 29.71 15.03 
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31-Mar-21 38.51 37.48 37.48 37.44 37.24 34.88 33.33 30.12 15.03 

30-Jun-21 38.51 37.49 37.48 37.44 37.28 34.93 33.49 30.32 15.03 

30-Sep-21 38.51 37.48 37.44 37.45 37.23 34.57 32.91 30.01 15.03 

31-Dec-21 38.51 37.48 37.47 37.46 37.23 34.62 32.91 29.73 15.03 

31-Mar-22 38.51 37.48 37.47 37.45 37.24 35.02 33.40 30.38 15.03 

30-Jun-22 38.51 37.48 37.44 37.45 37.28 35.19 33.57 30.54 15.03 

30-Sep-22 38.51 37.48 37.44 37.45 37.22 35.04 33.66 30.86 15.03 

31-Dec-22 38.51 37.47 37.46 37.44 37.18 35.04 33.33 30.56 15.03 

31-Mar-23 38.51 37.48 37.44 37.45 37.22 34.98 33.49 30.88 15.03 

30-Jun-23 38.51 37.48 37.44 37.45 37.22 35.24 33.95 31.47 15.03 

30-Sep-23 38.51 37.48 37.44 37.45 37.17 34.80 33.31 29.95 15.03 

31-Dec-23 38.51 37.48 37.44 37.45 37.22 35.25 34.05 31.29 15.03 

31-Mar-24 38.51 37.47 37.46 37.44 37.16 35.08 33.61 30.79 15.03 

                    

date 
Realised unsecured share in % 

max unsec 1% 2.50% 5% 50% 95% 97.50% 99% min unsec 

31-Dec-19 34.78 35.09 35.01 34.94 34.99 35.00 34.94 34.28 24.45 

31-Mar-20 34.92 34.99 34.97 35.04 35.01 35.00 34.58 34.36 24.75 

30-Jun-20 34.92 35.05 34.91 35.01 34.99 35.00 34.63 34.27 24.60 

30-Sep-20 34.88 34.95 35.04 35.02 35.01 35.00 34.62 34.25 24.64 

31-Dec-20 35.14 35.00 35.02 34.99 34.99 35.00 34.54 34.30 24.52 

31-Mar-21 35.00 35.03 35.00 34.96 35.01 35.00 34.61 34.34 24.69 

30-Jun-21 35.21 34.97 35.05 34.92 35.00 35.00 34.63 34.26 24.56 

30-Sep-21 34.48 35.16 35.10 34.99 35.00 35.00 34.17 33.89 28.28 

31-Dec-21 34.95 34.98 35.13 34.90 34.99 35.00 34.17 33.89 28.30 

31-Mar-22 34.65 35.05 34.96 35.02 35.01 35.00 34.55 34.12 24.27 

30-Jun-22 35.29 35.02 35.05 34.97 35.00 35.00 34.67 34.29 24.65 

30-Sep-22 34.97 35.05 35.03 35.01 34.99 35.00 34.63 34.22 24.18 

31-Dec-22 35.14 34.94 35.00 35.01 35.00 35.00 34.44 33.99 25.30 

31-Mar-23 34.62 35.03 34.96 35.01 35.00 35.00 34.48 33.98 25.82 

30-Jun-23 34.43 34.97 34.95 35.01 34.99 35.00 34.66 33.98 26.95 

30-Sep-23 34.91 35.05 35.05 34.95 34.99 35.00 34.30 33.84 29.24 

31-Dec-23 35.37 35.02 34.98 34.96 35.00 35.00 34.72 33.98 26.59 

31-Mar-24 35.38 35.13 34.95 35.04 34.98 35.00 34.43 33.68 29.05 

 

We report the distributions of the (un)secured supplies and how they change in normal versus 

stressful times. We plot histograms in figures D.1 and D.2. of possible supplies derived in the 

model, based on all realisations and all quarters of the analysis. The substitution effects 

between the two times and markets are apparent. 

 

Figure D.1. Secured supply quantity, histogram 
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Figure D.2. Unsecured supply quantity, histogram 

 
 

Demand 

To estimate demands on (un)secured market, 𝐷𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐 = 𝑐𝑖,𝑡

(𝑢𝑛)𝑠𝑒𝑐 − 𝑑 · 𝑠𝑝𝑟𝑒𝑎𝑑𝑛,𝑡
(𝑢𝑛)𝑠𝑒𝑐

, d > 0, 

we obtain initial values of system demand 𝑐𝑖,𝑡
(𝑢𝑛)𝑠𝑒𝑐

, such that that the actual liquidity that 

remains after the shock is regressed on the size of the funding shock, in line with the 

cointegrating relationship between required and actual liquidity modelled in Dujim and Wierts 

(2016). By doing so, we obtain higher positive values of demand in case of worst funding 

shocks, whereas in good times, resulting demand becomes negligible. Finally, the coefficients 

b and d in supply and demand equations are kept constant across different realisations, which 

means that the slope of all curves does not change.  In the end, we have 10.000 upward sloping 

functions of supply curves which shift at quarter, with shifting to right (left) when realizations 

are worse for the secured (unsecured) case, and to the right (left) when realizations are better 

than the median. 

 

Appendix E – Cost of Funding 

Cost of funding for each bank as described in the main text, depends on the own riskiness, the 

overall market risk, and central bank rate. Figure E.1. shows the full range of potential Cost of 

Funding outcomes in our framework, respectively for the secured and unsecured markets. As 

the secured and unsecured spreads are very similar with respect to their upper and lower bound, 

the resulting overall cost of funding on both markets is similar, with a bit greater value for the 

unsecured market. Figure E.2. (left panel) shows the satisfied quantities on both markets, and 

(right panel) the resulting cost of funding in monetary units. 
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Figure E.1. Cost of funding, secured market – left panel, unsecured market – right panel 

 

Figure E.2. Satisfied quantities on both markets (left panel) and cost of funding in monetary 

units (right panel) 
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Appendix F – selected bank runs 

Bank, date 
% of deposits, 

time 
Reason Source 

Banking System, Saudi 

Arabia, 1990 
11%, 1 week Political uncertainty, after invasion of Kuwait by Iraq Schmeider et al. (2011) 

Banesto, Spain, 1994 8%, 1 week 
Bad business choices (“disastrous expansion of loan book”); central bank took 

control, loss of confidence 

Schmeider et al. (2011); 

Counsel (1994) 

Banking System, Argentina, 

2001 
30%, 9 months Economic crisis resulted in loss of confidence McCandless et al. (2003) 

Banking System, Uruguay, 

2002 
56%, 6 months Spread from Argentina (dependent on Arg) Schmeider et al. (2011) 

Northern rock, UK, 2007 57%, 12 months 
After announcement about using emergency loan facility of BoE, depositors made 

a bank run 
Shin (2009) 

Parex bank, Latvia, 2008 25%, 4 months 
FCMC51 revealed shortcomings in the lending process (i.e. bad business conduct), 

loss of confidence 
IMF (2013) 

IndyMac bank, USA, 2008 7.5%, 1 week 
After Senator Schumer released letters he sent to regulators about bank’s 

problems52 
FDIC (2009) 

DSB bank, Netherlands, 

2009 
30%, 12 days 

Business choice of selling mortgages jointly with life insurance led to high 

premiums that customers were not able to cope with. This led to founding a 

foundation of unsatisfied customers, whose representative P. Lakeman motivated 

depositors to make a bank run. 

Pruyt & Hamart (2010) 

Metro bank, UK, 2019 Not estimated Social media rumour spread, after a fall of the bank’s stock price Bloomberg (2019) 

Sberbank Europe AG, 

Austria, 2022 

Sberbank branch/subsidiary 

Czech Republic,  

Croatia, Slovenia, 2022 

Not estimated yet, 

runs lasted a couple 

of days 

Geopolitical events, loss of confidence in the bank 

EBA (2022) 

 

EBA (2022b) 

SVB, US, 2023 25%, 1 day 
Explained in main body of the paper 

 
FED (2023) Signature Bank, US, 2023 20%, 1 day 

First Republic, US, 2023 57%, 7-14 days 

 

 
51 Financial and Capital Market Commission of Latvia 
52 Due to bank relying “heavily on higher cost, less stable, brokered deposits, as well as secured borrowings, to fund its operations and focused on stated income and other 

aggressively underwritten loans in areas with rapidly escalating home prices, particularly in California and Florida”. 

https://www.imf.org/external/pubs/ft/wp/2012/wp1203.pdf
https://www.imf.org/external/pubs/ft/wp/2012/wp1203.pdf
https://www.imf.org/external/pubs/ft/wp/2012/wp1203.pdf


59 
 

Appendix G – Robustness Checks 

Figure G1 – Loss Impact of Management Actions by Round 

 
Note: R1 refers to the Round 1 and R2 refers to Round 2 effects.  
 

Table G2 – Correlation Funding Shocks and Losses by percentile  

 
Note: Fund Shock1 refers to initial funding shocks, fund shock2 to funding withdrawals augmented with Round 

1 bank runs, and fund shock3 to funding withdrawals augmented with Round 1 and Round 2 bank runs. 

 

Table G3: Funding Cost Channel Sensitivity to Stress Horizon and Funding Shock Size 

(Basis Points) 

 
Note: 3M, 6M and 1Y refer to the length of the stress horizon (baseline estimates are based on 3M), whereas 10S, 

20S, 30S,40S, 50S to the severity of the funding shock increased respectively by 10% (10S) up to 50% (50S).  

 

 

 

 

 

Correlation Fund Shock1 - Initial Losses Fund Shock2 - Initial Losses Fund Shock3 - Total Loss

pct99 0.37 0.54 0.43

pct95 0.42 0.45 0.14

pct90 0.67 0.68 0.11

Delta PD 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PD_3M_10S 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0

PD_3M_20S 0.2 0.3 0.2 0.1 0.3 0.1 0.1 0.1 0.0 0.0

PD_3M_30S 0.4 0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.4 0.0

PD_3M_40S 0.6 0.7 0.2 0.2 0.5 0.2 0.2 0.3 0.4 0.0

PD_3M_50S 1.1 1.0 0.2 0.3 0.6 0.2 0.2 0.3 0.4 0.0

PD_6M 1.9 1.9 0.5 0.9 0.8 0.5 0.2 0.5 0.6 0.0

PD_6M_10S 2.4 2.0 0.5 0.9 0.9 0.7 0.2 0.5 0.6 0.0

PD_6M_20S 2.9 2.4 0.5 1.1 1.3 0.7 0.2 0.5 0.7 0.0

PD_6M_30S 3.3 2.7 0.5 1.1 1.7 0.7 0.2 0.6 0.7 0.1

PD_6M_40S 3.8 3.2 0.9 1.2 1.8 0.7 0.2 0.7 0.9 0.1

PD_6M_50S 4.2 3.3 1.1 1.4 2.0 0.9 0.2 0.8 1.0 0.1

PD_1Y 6.3 4.7 2.2 2.2 2.8 1.6 0.4 1.6 1.5 0.9

PD_1Y_10S 7.0 5.8 2.3 2.4 3.2 2.0 0.8 1.9 1.7 0.9

PD_1Y_20S 7.8 6.6 2.5 2.7 3.2 2.0 0.8 2.0 1.9 1.4

PD_1Y_30S 9.0 7.4 2.7 3.0 3.7 2.1 1.1 2.1 2.3 1.4

PD_1Y_40S 10.0 8.2 3.1 3.4 4.0 2.3 1.5 2.4 2.3 1.4

PD_1Y_50S 10.9 8.6 3.8 3.6 4.4 2.6 1.6 2.7 2.6 1.5
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Table G4 – Average Probability of Default Decomposition by binding Default Thresholds 

 

Table G5 – Average Probability of Default Sensitivity to CET1 Ratio Default Threshold 

 
Note: Xpct refers to the threshold used to identify a bank breaching its CET1 minimum capital requirements which 

was set equal to 7% across banks.  

 

Figure G2 – US Banks’ Default Rate 

 
Source: Federal Deposit Insurance Corporation (FDIC), commercial banks only.    
 

PD Average 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PD_CET_LEV 80.6 73.8 44.8 62.4 73.9 106.2 71.1 55.9 40.3 41.0

PD_CET 83.6 54.0 56.2 69.1 13.6 12.5 6.3 2.5 5.0 7.3

PD_LEV 10.0 8.8 2.1 4.9 2.3 18.2 12.1 23.9 7.3 2.3

PD_CET_LIQ 2.3 3.5 3.4 2.1 0.0 0.5 1.3 0.4 0.0 0.0

PD_LIQ 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PD_CET_LEV_LIQ 0.0 0.3 0.1 0.0 0.0 0.0 0.1 0.4 0.0 0.0

PD_LEV_LIQ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TOT 177 141 107 139 90 137 91 83 53 51

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 AVG

PD_6pct 86 77 37 44 45 84 64 84 34 29 59

PD_7pct* 118 94 53 64 55 88 71 87 37 31 70

PD_8pct 180 144 79 89 81 104 94 101 48 46 97

PD_9pct 305 239 124 138 122 144 146 141 69 65 149

PD_10pct 517 386 190 209 183 215 213 211 106 98 233
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