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1. Introduction 

Input-output linkages among non-financial corporations affect the productive structure of our 

economic system, similarly to the way contractual relationships among financial institutions 

determine the microstructure of the financial system. The two systems are tightly woven 

together as the financial sector provides funding to the real economy via loans and allocates 

capital in the form of debt and equity securities. Ultimately, macro-financial linkages matter 

for business cycle fluctuations and financial stability (Gabaix 2011, Acemoglu et al. 2012, 

Acemoglu et al. 2015).  

Our work aims at modelling one side of this macro-financial nexus, namely how correlated 

corporate default shocks impact the financial system. Then, we model how these shocks 

propagate within the financial system via solvency and fire-sales contagion. To achieve this, 

we develop a state-of-the-art microstructural stress testing methodology that aims to lay the 

foundations for modelling and assessing solvency risks in a system-wide setting.  

To model the wider financial system, we start with a two-sector microstructural model of the 

financial system that includes banks and insurers. There have been many such models of the 

banking sector, but very few modelling the interactions across sectors (Roncoroni et al. 2021, 

Battiston et al. 2017), especially capturing the interplay with the insurance sector. The 

insurance sector can be of systemic importance to the wider financial system, as it is one of the 

main investors in financial assets. The Global Financial Crisis indeed revealed that insurers can 

be a source of contagion (Weiß and Mühlnickel, 2014; Acharya et al. 2009). Therefore, the 

assessment of risks for the insurance sector through stress testing and its interaction with the 

banking sector is very important from a financial stability perspective, especially through the 

lens of fire-sale dynamics. 

To compute economic losses, we use a stochastic approach to stress test design (Montagna et 

al. 2021, Sydow et al. 2024 and Elsinger et al. 2006), which includes estimating economic 

credit and traded risk losses via a Gaussian copula model capturing the dependence structure 

of counterparty defaults across sectors and countries (Glasserman, 2004 and Glasserman and 

Li, 2005), as well as firms’ gross realized profits so as to model firms’ net profit and loss (P&L) 

distributions over time. Once we derived the net profit and loss for each firm, we 

deterministically compute feedback and amplifications mechanisms as a function of the P&L 

shock and quantify its impact on firms’ capital positions. The feedback and amplification 

mechanisms we include are fire-sale spillover and solvency contagion. Our approach enables 

us to distil the contribution of initial economic shocks and the feedback and amplification 
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mechanisms to extreme tail events, tracking four contagion channels: economic credit and 

traded risk losses, economic profits, fire sales losses and solvency contagion losses.  

To empirically test and calibrate the methodology, we construct the most comprehensive 

granular exposures dataset of the UK financial system covering loan and security exposures of 

banks and insurers, capturing roughly £4.6 trillion of assets. Our dataset also has a time series 

dimension and spans from 2019 to 2023.  

Overall, we find that, since the Covid-19 Pandemic (2020-21), the UK financial system has 

experienced an improvement in both profit expectations and tail losses. Throughout the paper, 

we compute tail losses using the Conditional Capital at Risk (CCaR) metric, which is the 

average tail loss conditional on the outcomes in the 90th, 95th and 99th percentile (CCaR90, 

CCaR95 and CCaR99 respectively) or, in other words, an extreme stress event that would occur 

with 1% probability (so at the 99th percentile).  A CCaR99 scenario may lead to a £133 billion 

loss in the UK financial system on average in our sample.   

Next, we isolate the contribution of UK banks and insurers to these tail losses. Banks contribute 

more to tail losses (80% of total CCaR99 losses) than insurers, consistent with banks’ larger 

share in the exposure network (81%). Digging deeper, the picture becomes more nuanced 

across sectors. It is important to note that the contribution of different contagion channels to 

tail losses differs across sectors as well as across percentiles of the profit and loss distribution. 

Specifically, in the CCaR99 scenario, we find that insurers are more affected than banks by 

economic credit and traded risk losses, respectively 68% and 60%, while economic profits in 

both sectors play a less relevant contribution. Moreover, fire-sale losses affect banks (33%) 

more than insurers (25%), although banks only hold 23% of their assets as securities, while 

insurers’ portfolio composition is made up exclusively of securities. The low relative 

contribution of fire-sales to insurers’ tail risk is due to the limited passthrough of asset shocks 

to their capital.  

The analysis also illustrates that feedback and amplification mechanisms - primarily fire-sales 

spillovers - materially increase the likelihood of experiencing extreme stress events as well as 

their severity. We showcase that the profit channel is materially less important than the 

economic credit loss channel, respectively explaining 5% and 62% of total variation 

respectively in the CCaR99 scenario. This result corroborates findings in the existing literature 

on the significance of correlated exposures in determining systemic financial externalities 

(Elsinger et al. 2006; Acharya, 2009; Billio et al. 2012; Patro et al., 2013; and Glasserman and 

Young, 2015).  
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Moreover, we show that using a homogeneous price impact function without either security-

specific selling pressures or market selling pressure may lead to overestimate losses for low  

stress events, consistently with the findings provided in Fukker et al. (2022). Nonetheless, we 

show that for medium (90th), severe (95th) and extreme stress events (99th) a homogeneous price 

impact function leads us to materially underestimate fire-sale losses in the range of -9% to -

50%. Moreover, also related to the modelling of fire-sale dynamics, we provide evidence on 

the impact of a pecking order strategy (selling liquid assets first) versus a pro-rata approach. 

Consistently with Caccioli et al. (2024), we find that on average a pro-rata approach does 

overestimate fire sales losses compared to a pecking-order strategy. In this respect, we find a 

non-linear fire sales impact between the two strategies, which gets wider the lower the severity 

of the stress event the system experiences, respectively ranging from a factor of 7 times to 20 

times. This result corroborates findings by Jiang et al. (2017) and Schaanning (2016) that a 

pro-rata approach is more suitable for periods of stress (tail outcomes), whereas a pecking order 

strategy bring much larger benefits given a medium-low stress environment.  

Our framework showcases that systemic events may be triggered via idiosyncratic shocks to 

firms’ counterparties and that financial amplification mechanisms exacerbate materially the 

outcome both in terms of severity and loss correlation between the two sectors.1 The 

contribution of the drivers to the realized severity differs across percentile of the profit and loss 

distribution as well as across sectors and on a firm-basis, highlighting that a probabilistic 

approach combined with firm heterogeneity and multiple risk channels is necessary to 

disentangle the role of interconnectedness and financial contagion in triggering market 

disruptions in modern financial systems. 

The remainder of the paper is organized as follows. Section 2 details the methodology, 

including the modelling of the P&L distribution and the feedback and amplification 

mechanisms. Section 3 covers the data and calibration of the methodology. Section 4 

showcases our results in terms of severity and probability of tail events using as proxy expected 

losses (Capital at Risk estimates) as well as expected shortfalls – expected tail losses 

conditional to various degree of severity. In the end, Section 5 provides a sensitivity analysis 

shedding light on key assumptions affecting our results. Last section concludes and discusses 

main findings of the paper.  

 
1 Limitations relate to the exclusion of liquidity contagion and solvency-liquidity interactions which may further 

amplify the results here documented, and the lack of the investment fund sector which plays an important role in 

the determination of the fire-sale price dynamics  as shown by Sydow et al. 2024.  
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1.1 Literature Review  

Gabaix (2011) has showed how concentration risk in the economic system such as shocks to 

large non-financial corporations may lead to remarkable fluctuations in economic activity - the 

granular origins of aggregate fluctuations. Moreover, Acemoglu et al. (2012) showed how 

interconnectedness in economic activity such as a high level of interdependency in the 

intersectoral input-output firms’ linkages - network origins - may explain aggregate 

fluctuations in output. These results are extremely relevant in light of the Covid-19 pandemic, 

which has caused bottleneck problems in the global supply chain. These network features - 

concentration risk and interconnectedness - also play an important role within the financial 

system determining fluctuations in the level of systemic risk. 

Our paper is related to several studies on the role played by interconnectedness and 

concentration risk in modern financial systems, and how they might exacerbate systemic risk 

externalities. This paper extends the granular mapping of the UK banking sector of Covi et al. 

(2022) to include UK insurers and thus represents a step forward in painting a very detailed 

picture of the UK financial system2. Moreover, our dataset has also a time series dimension, 

which allows to track and compare losses over time. This is a key contribution to the literature, 

as it is very rare that microstructural contagion models can be run over multiple time periods. 

Next, our work contributes to the stress testing and system-wide systemic risk literature, since 

we develop a multi-sector model comprising banks and insurers. There have been many 

network models of the banking sector3 and more recently multi-sector network models of the 

financial system4 (Aikman et al. (2019), Halaj (2018), Mirza et al. (2020), Farmer et al. (2020), 

Bookstaber et al. (2018)), but only one of banks and insurers jointly (Caccioli et al. 2024). Of 

the multi-sector models, the closest to ours is Sydow et al. (2024) since we also rely on a 

stochastic approach to scenario design thereby endogenously determining the full distribution 

of potential P&L shocks. Their paper shows how the integration of endogenous reactions (asset 

liquidation) of investment funds and the related security exposure network into a 

microstructural banking model can amplify banks’ losses further via indirect fire-sale 

contagion. In the same way, we provide evidence that the UK insurance sector also tends to 

amplify UK banks’ losses via indirect fire-sale price-mediated equity contagion proportionally 

to the insurers’ share of total security holdings and materially under medium/severe stress 

conditions - 90th/95th percentile. Furthermore, we find that under extreme stress conditions (99th 

 
2 French et al. (2015) provide a good overview of the UK insurance sector. 
3 See Huser (2015) for a review of the financial network literature. 
4 See Aikman et al (2023) for a survey of the literature on macro-prudential stress testing models. 
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percentile) UK banks and insurers’ loss correlation decreased due to a low degree of correlated 

credit risk losses, implying smaller fire-sale spillovers across the two sectors. In the end, 

consistent with findings by Billio et al. (2012) and Chen et al. (2012) we find evidence that 

banks’ fire-sale spillovers affect insurers’ solvency position more materially than vice versa.   

The third contribution is at a methodological level. Indeed, we model feedback and 

amplification mechanisms as a function of the P&L shocks endogenously derived according to 

exposure/obligor-specific information instead of relying on a set of exogeneous shocks which 

are not anchored to current economic and financial conditions. To achieve this, we build upon 

Covi et al (2022) and combine different reaction functions for the different sectors: banks may 

be forced to deleverage (Khandani and Lo, 2011; Cont and Wagalath, 2016; Coen et al. 2019) 

to restore their targeted leverage ratio; non-life insurers may liquidate assets to restore their 

targeted solvency ratio (Ellul et al., 2011; Caccioli et al., 2024); life insurers may deleverage 

to meet potential investor redemptions (Coval and Stafford, 2007; Baranova et al. 2019). In the 

end, when a firm ends up breaching its minimum regulatory capital requirements, and thus 

becomes insolvent, it transmits losses via direct financial exposures in the bank-insurance 

network (Eisenberg and Noe, 2001; Upper 2011; Bardoscia et al. 2019). Indirect financial 

exposures via overlapping portfolios constitute a well-recognised source of risk, providing a 

channel for financial contagion induced by the market price impact of asset deleveraging. We 

rely on the novel method developed by Fukker et al. (2022) to calibrate the market price impact 

on a security basis from historical daily traded volumes and price returns. Caccioli et al (2024) 

find that performing a stress simulation that does not account for common asset holdings across 

multiple sectors can severely underestimate the fire sale losses in the financial system. 

Leveraging upon this methodological framework, we shed light on the sensitivity of the results 

to key fire-sale modelling assumptions such as homogeneous versus heterogenous price-impact 

functions, firms’ selling strategies (pro-rata versus HQLA pecking order), as well as the role 

of insurers’ asset-liability adjustments. 

Finally, our paper builds upon the existing literature using a stochastic approach to portfolio 

credit risk modelling (Glasserman, 2004; Montagna et al. 2021; and Sydow et al., 2024) and 

augment it with a profit channel so as to derive a full P&L distribution for the UK financial 

system. This modelling innovation allows us to benchmark the expected (mean) model 

outcomes in terms of balance sheet variables and regulatory ratios against actual quarter-firm 

specific values. Moreover, it also allows us to smooth initial losses so as to place the severity 

of the initial shocks into a more realistic perspective.  
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2. Methodology 

The methodology aims to derive a profit and loss distribution augmented with feedback and 

amplification mechanisms for both banks and insurers exploiting loan and security-level 

portfolio information on a quarterly frequency. To do so, we derive a two-step sequential 

procedure in which as first step we calculate via Monte Carlo simulations the loss distribution 

on direct economic exposures by sampling counterparty default events (Elsinger et al. 2006). 

Next, we match consistently across simulations and by firm supervisory data on gross realized 

profits to the estimated economic credit and traded risk losses so as to derive a firm-specific 

net profit and loss distribution. As second step, conditional to the realization of each P&L 

simulation, we quantify deterministically the potential feedback and amplification mechanisms 

via fire-sales and solvency contagion at a firm-level. This sequential procedure is estimated for 

20.000 simulations over 14 quarters allowing us to consistently assess on a firm-basis and over 

time the P&L distribution of firms, the severity and probability of extreme outcomes, and 

finally to analyse the system propensity to instability.  

2.1 Stochastic Profit and Loss Distribution 

2.1.1 Loss Distribution 

Leveraging upon Vasicek (1987), we compute the loss distribution on a firm-level (𝐿𝑖) as a 

function of each firm’s portfolio of loan and security exposures (𝐸𝑋𝑃𝑖,𝑗,𝑒), the exposure-

specific loss given default parameters (𝐿𝐺𝐷𝑖,𝑗,𝑒), and the distribution of shocks to portfolio’s 

obligors (𝑌𝑗,𝑛). Specifically, to model obligor default events we rely on a Monte Carlo sampling 

method modelling the dependence structure of counterparty defaults across sectors and 

countries via a Gaussian copula model (Glasserman, 2004; Glasserman and Li, 2005).  

𝐿𝑖,𝑛 = ∑((

𝐽

𝑗

 𝐸𝑋𝑃𝑖,𝑗,𝑒 ∗  𝐿𝐺𝐷𝑖,𝑗,𝑒) ∗ 𝑌𝑗,𝑛)  

Where 𝑌𝑗,𝑛 is the obligor default indicator matrix, taking value 1 if the obligor defaults or 0 

otherwise. The j indicator refers to the set of obligors in a firm’s portfolio and the n subscript 

indicates in which simulation obligor j defaults or not5. As we take the loss-given-default 

parameters as given as well as the network of exposures as described in Section 3 below the 

problem boils down to the estimation of the matrix 𝑌𝑗,𝑛6.  

 
5 We perform 20.000 simulations to derive the loss distribution.  
6 We omit from this vector of corporate defaults, and so from the stochastic simulations, UK banks and insurers 

that we aim to model their default endogenously. 
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In this respect, we use a sampling method based on a Gaussian-Copula model in order to 

estimate the default indicator as a function of the counterparty-specific probability of default 

(𝑃𝐷𝑗) as well as of the obligors’ dependence structure. This latter feature would allow us to 

realistically model correlated corporate default events by sector and country so as to generate 

a cluster of defaults. Correlated default events as discussed in Acemoglu et al. (2012, 2015) as 

well as in Gabaix (2011) may be generated via intersectoral input-output linkages (supply chain 

spillovers) that is, via common country and sector-specific financial and macro shocks. This 

interdependence among obligors’ default is introduced through a multivariate normal vector 

(𝜉1, . . . , 𝜉𝑗) of latent variables. Each default indicator is represented as: 

𝑌𝑗 =  1{𝜉𝑗 >  𝑥𝑗}, 𝑗 =  1, . . . , 𝐽. 

The threshold 𝑥𝑗 represents the default boundary (Merton, 1974), which is matched to the 

marginal default probability of obligor j (𝑃𝐷𝑗). 𝜉𝑗 follow a standard normal distribution and 

we set 𝑥𝑗 =  𝜑−1(1 − 𝑃𝐷𝑗), where 𝜑 is the cumulative normal distribution, and the correlations 

among the 𝜉𝑗 determine the dependence among the 𝑌𝑗 as follows: 

𝑃(𝑌𝑗 = 1) = 𝑃(𝜉𝑗 >  𝑥𝑗) = 𝑃(𝜉𝑗 >  𝜑−1(1 − 𝑃𝐷𝑗) = 𝑃𝐷𝑗 

To derive the set of obligors’ default indicator 𝑌𝑗, we estimate the correlation structure of 𝜉𝑗, 

whose calibration is provided in Section 3.2. The key output is a loss distribution of 20.000 

simulations, which is firm-specific and time variant on a quarterly frequency7.  

2.1.2 Net Profit and Loss Distribution 

Since feedback and amplification mechanisms are a function of firms’ realized loss outcomes 

given that firms are assumed to respond to a change in their regulatory capital or a change in 

solvency requirements (leverage and solvency ratios), we aim to take firms’ gross profits into 

account to derive a net profit and loss distribution (𝑃𝐿𝑖,𝑛,𝑡
𝐸𝐶 ) so as to smooth the overall severity 

of the loss estimates across simulations and thus avoid an overestimation of financial 

contagion.  

𝑃𝐿𝑖,𝑛,𝑡
𝐸𝐶 = 𝑃𝑖,𝑛,𝑡 − 𝐿𝑖,𝑛,𝑡 ~ Operating Profit (loss) when 𝑃𝐿𝑖,𝑛,𝑡

𝐸𝐶 > 0 (<0) 

Hence, we scale the loss distribution for each firm and time period by the firm-specific realized 

gross profits reported in that quarter (𝑃𝑖,𝑡). We use as proxy for gross profits operating profits 

excluding impairments which instead are endogenously derived from firms’ portfolio of 

 
7 The set of counterparties defaulting in each simulation is the same set for all firms we model so as to have 

consistency of results across firms in each simulation. 
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exposures (𝐿𝑖,𝑛,𝑡). However, to create consistency between the loss estimates and the realized 

profit variable across simulation severity - given that higher estimated losses imply a higher 

number of corporate defaults, and so in turn lower potential gross profits - we want to introduce 

some heterogeneity and derive a profit distribution (𝑃𝑖,𝑛,𝑡). To achieve that, we use as median 

value firm’s realized gross profits and we model the left tail of the profit distribution as an 

inverse function of the loss estimate calculated for that simulation (n) and adjusted by the 

historical volatility of firm i’s gross profits (𝜎𝑖
𝑃)8. We then scale the volatility parameter by the 

distance from the median percentile of the loss distribution, thereby mapping the highest loss 

percentile into one standard deviation decrease in profits, and the lowest loss percentile into 

one standard deviation increase in profits relative to the median value (𝑃𝑖,𝑡).  

𝑃𝑖,𝑛,𝑡|0.5 < 𝑛 < 1 =  𝑃𝑖,𝑡 +
𝜎𝑖

𝑃𝑃𝑖,𝑡

𝑝(𝐿𝑖,𝑛,𝑡)
 𝑖𝑓 𝐿𝑖,𝑛,𝑡 < 𝐿50𝑡ℎ 

Where 𝑝𝑐𝑡(𝐿𝑖,𝑛,𝑡) = 0 𝑖𝑓 𝑝𝑐𝑡(𝑛) = 0.5 𝑎𝑛𝑑 𝑝𝑐𝑡(𝐿𝑖,𝑛,𝑡) = 1 𝑖𝑓 𝑝𝑐𝑡(𝑛) = 1 𝑜𝑟 0 

2.2 Feedback and Amplification Mechanisms 

Once derived the net profit and loss distribution (operating profits) for each firm, we compute 

deterministically feedback and amplifications mechanisms as a function of the initial P&L 

shock in each simulation which affects firms’ capital positions.  In this respect, banks may be 

forced to deleverage (Khandani and Lo, 2011; Cont and Wagalath, 2016; Coen et al. 2019; 

Duarte and Eisenbach, 2021) to restore their targeted leverage ratio, non-life insurers may 

liquidate assets to restore their targeted solvency ratio (Ellul et al., 2011; Caccioli et al., 2024), 

whereas life insurers may deleverage to meet potential investor redemptions (Coval and 

Stafford, 2007; Baranova et al. 2019). In the end, when a firm breaches its minimum regulatory 

capital requirements, and thus becoming insolvent, it transmits losses via direct financial 

exposures in the bank-insurance network (Eisenberg and Noe, 2001; Bardoscia et al. 2019).   

2.2.1 Fire-Sales 

Selling Pressure 

Consistently with the relevant literature on fire-sales, conditional to a given stress, banks, non-

life insurers, as well as life insurers are assumed to deleverage and thus restore respectively 

 
8 We have modelled profits as inverse function of the realized loss severity consistently with the negative 

relationship we observe between firms’ historical operating profit and impairments as also argued by Sydow et 

al. (2024). The variability of gross profits is calibrated according to one-standard deviation of firm-specific gross 

profits estimated on a quarterly frequency over the period 2014 - 2023.   
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their initial targeted leverage ratio (𝐿𝑅𝐵
0), solvency ratio (𝑆𝐼𝐼𝐿

0) or meet the redemption shock 

(𝑅𝑁𝐿) as in the following set of equations.  

Banks: 𝐿𝑅𝐵
0 =

𝑇𝐴0−𝑇𝑖𝑒𝑟10

𝑇𝑖𝑒𝑟10 ; where: (
𝐿𝑅𝑖,𝑠,𝑞

1

𝐿𝑅𝑖,𝑠,𝑞
0 − 1) > 𝐶𝑉𝑖

𝐿𝑅 and  𝐶𝑉𝑖
𝐿𝑅 =  

𝜎𝑖
𝐿𝑅

𝐸[𝐿𝑅𝑖,𝑞]
 

Life Insurers: 𝑆𝐼𝐼𝐿
0 =

𝑂𝑊𝐹0

𝑆𝐶𝑅0 ; where: (
𝑆𝐼𝐼𝑖,𝑠,𝑞

0

𝑆𝐼𝐼𝑖,𝑠,𝑞
1 − 1) > 𝐶𝑉𝑖

𝑆𝐼𝐼 and  𝐶𝑉𝑖
𝑆𝐼𝐼 =  

𝜎𝑖
𝑆𝐼𝐼

𝐸[𝑆𝐼𝐼𝑖,𝑞]
 

Non-Life Insurers: 𝑅𝑁𝐿 = 𝛼(𝑃𝐿𝑖,𝑛,𝑡) 

Note: TA refers to total assets, Tier 1 to Tier1 Capital, LR to leverage ratio, CV to coefficient of variation; 𝜎 to 

volatility parameter, OWF to own funds, SCR to solvency capital requirements; R to redemption shock. The index 

= 0 refers to initial targeted values; index =1 refer to computed values.  

Moreover, firms are assumed to respond only to sizable negative P&L shocks, that is, when 

their regulatory thresholds deteriorate such that the change in the bank-specific leverage ratio 

or insurer-specific solvency ratio is larger than the threshold 𝐶𝑉𝑖
𝐿𝑅 or 𝐶𝑉𝑖

𝑆𝐼𝐼, respectively the 

coefficient of variation of the leverage ratio and solvency ratio. We implement this threshold 

approach to avoid an overestimation of fire-sales spillovers in those realizations with medium-

low severity as highlighted by Pichler et al. (2021). In the end, non-life insurers or unit-linked, 

are modelled similarly to an investment fund which is forced to deleverage according to a 

redemption shock which is calibrated with 𝛼 =
1

3
 as in Baranova et al. (2019), implying 30% 

selloff rate of the MtM losses experienced.  The quantity of assets sold is computed as follow: 

𝑄𝐵
∗  = 𝑇𝐴1 − 𝑇𝐼𝐸𝑅11(1 + 𝐿𝑅0);          𝑄𝐿

∗ =
𝑇𝐿1+𝑇𝐴1(𝑆𝐼𝐼0∗

𝑆𝐶𝑅1

𝑇𝐴1 −1)

𝑆𝐼𝐼0∗
𝑆𝐶𝑅1

𝑇𝐴1

;          𝑄𝑁𝐿
∗  =

1

3
(𝑃𝐿) 

In the end, we assume that firms rely on a pro-rata approach to deleveraging, that is, distributing 

𝑄∗ - the firm-specific selling pressure – across all securities in a firm’s portfolio9. This approach 

is also corroborated by Jiang et al. (2017) and Schaanning (2016) that suggested that a pro-rata 

approach is more suitable for periods of stress. In the end, we model only one-round of fire-

sales losses as in Caccioli et al. (2024) and not multiple rounds since we model institutions as 

aggressive leverage targeters10.  In the sensitivity analysis we will be testing this assumption 

by adopting a pecking-order approach and compare both results.  

Price Impact Function (PIF) 

 
9 We constraint the selling pressure to be smaller or equal to the total amount of securities available for sales, 

since in some cases a firm may be required to deleverage more than the quantity of security available.  
10 Given this assumption, as shown in Ramadiah et al. (2022) as well as in Duarte and Eisenbach (2021), the 

inclusion of multiple rounds of asset liquidations may reduce the accuracy of the Fire-sales estimates.   
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Once we have determined the quantity of assets sold by each firm (i) in each simulation (n) to 

restore the initial solvency position and we have determined the security-specific quantity sold 

by implementing a pro-rata approach, we compute the total selling pressure in the market 

(𝑄𝑠,𝑛,𝑡
∗ ) on a security-level (s) as well as the total selling pressure in the system for each 

simulation so as to track the overall severity of the fire-sales event (𝑄𝑛,𝑡
∗ ).  

𝑄𝑠,𝑛,𝑡
∗  = ∑ 𝑄𝑖,𝑠,𝑛,𝑡

∗

𝐼

𝑖

;     𝑎𝑛𝑑     𝑄𝑛,𝑡
∗  = ∑ 𝑄𝑠,𝑛,𝑡

∗

𝑆

𝑠

 

Once we have determined the quantity sold for each security 𝑄𝑠,𝑛,𝑡
∗ , we rely on heterogeneous 

price impact functions to derive the security-specific price change 𝑝𝑠,𝑛,𝑡
∗ . In this respect, the 

literature has used multiple approaches, homogeneous versus heterogeneous price functions 

calibrated on a security or asset-class level. One of the most common approach is Cont and 

Wagalath (2016) which derives a price change conditional to the volumes sold and the depth 

of the market for the asset (s). However calibrating the market depth on a security-level across 

time is data intensive and not feasible to extend to a large number of securities. Moreover, this 

approach does not consider how price changes are affected non-linearly conditional to the 

severity of the fire-sales. For this set of reasons, we rely on Fukker et al. (2022) which estimates 

non-linear price impact functions via quantile regression for a wide range of securities (bond 

and equity) with heterogeneous characteristics, respectively by issuing sectors (NFC, GG, FC, 

CI) and country as well as by rating (low, medium, high) and size of the firm (small, medium, 

large).  Moreover, conditional to the characteristic of the security, the price impact vary as a 

non-linear function of the security-specific volume sold (£10, 50, 100 million) and according 

to the severity of the fire-sale events (rank in percentiles)11. Hence, we borrow from Fukker et 

al. (2022)’s the set of security-specific price impact functions (𝐹𝑠) and we match them to our 

set of securities (s) according the above described characteristics. Next, for each 𝐹𝑠 we 

determine the realized price impact according to i) the estimated Security-Specific (s) Selling 

Pressure (𝑄𝑛,𝑠,𝑡
∗ ) in simulation (n) and at time (t) and ii) the estimated Market Selling Pressure 

(𝑄𝑛,𝑡
∗ ) whose severity (n) is determined by its percentile in relative terms across 20.000 

simulations: 𝑃𝐼𝐹𝑠,𝑛,𝑡
∗ = 𝐹𝑠  (𝑄𝑠,𝑛,𝑡

∗ , 𝑄𝑛,𝑡
∗ ). 

This approach allows us to avoid biased estimates due to the application of linear and 

homogeneous price impact functions (Fukker et al., 2022), which may lead to overestimated 

 
11 This refers to the fact that for the same exact category a security belongs to, you may have different price effects 

depending on the percentile of the historical price change distribution.  
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fire-sales spillovers. Overall, we model the price changes for more than 6000 different 

securities, classified into 1100 asset classes, across n=20.000 simulations and over 14 different 

quarters. In Section 3 we will describe the distribution of potential price impact parameters for 

bond and equities, whereas in Section 4 we will be presenting the estimated price changes.  

Loss Function 

In the end, we compute Mark-to-Market losses (𝐿𝑖,𝑛,𝑡
𝐹𝑆 ) for each firm i’s portfolio of security 

conditional to each simulation (n) and time period (t). In this respect, we both compute direct 

losses (𝐿𝑖,𝑠,𝑛,𝑡 
𝐹𝑆|𝑑𝑖𝑟

) on the securities sold (𝑄𝑖,𝑠,𝑛,𝑡
∗ ) as well as the indirect losses (𝐿𝑖,𝑠,𝑛,𝑡 

𝐹𝑆|𝑖𝑛𝑑
) on the 

remaining security portfolio holdings (𝑄𝑖,𝑠,𝑛,𝑡
𝑃 ). Thanks to this rich set of results, we present in 

Section 4 a various set of risk metrics capturing the contribution of fire-sales spillovers to 

feedback and amplification mechanisms. In this respect, we derive distributional estimates of 

fire-sales spillovers on a system and sectorial level (banks and insurers) as well as we provide 

estimates for selling pressure and price changes across percentiles of fire-sales severity.   

𝐿𝑖,𝑛,𝑡
𝐹𝑆 = ∑ 𝐿𝑖,𝑠,𝑛,𝑡 

𝐹𝑆|𝑑𝑖𝑟
+  𝐿𝑖,𝑠,𝑛,𝑡 

𝐹𝑆|𝑖𝑛𝑑𝑆
𝑠 ;             𝐿𝑖,𝑠,𝑛,𝑡 

𝐹𝑆|𝑑𝑖𝑟
=  𝑄𝑖,𝑠,𝑛,𝑡

∗ ∗ ∆𝑝𝑠,𝑛,𝑡
∗   𝑎𝑛𝑑 𝐿𝑖,𝑠,𝑛,𝑡 

𝐹𝑆|𝑖𝑛𝑑
= 𝑄𝑖,𝑠,𝑛,𝑡

𝑃 ∗ ∆𝑝𝑠,𝑛,𝑡
∗   

3.1.2 Solvency Contagion 

Before deriving the augmented profit and loss distribution with feedback and amplification 

mechanisms, we want also to consider the potential effects of solvency contagion via bilateral 

direct financial exposures between and among banks and insurers conditional to the insolvency 

of an institution (i). The solvency contagion channel has been always considered as one of the 

major channel of risk propagation in the interbank market, and accounted for a large share of 

interbank losses in the 2008 GFC (Glasserman and Young, 2016).  Nonetheless, Bardoscia et al. 

(2017) has more recently identified a long-term decline in the contagion role played by this 

channel. Hence, we rely on the standard Eisenberg and Noe (2001)’s approach to estimate 

potential losses on bilateral exposures conditional to a firm j’s (bank or insurer) default event 

(𝑌𝑗,𝑛,𝑡)12. Hence, after computing the |P&L from economic exposures and losses from fire-sales 

spillovers, we update firms’ balance sheet and check whether a firm has defaulted, that is, it 

has breached is minimum capital requirement. For a bank this is modelled as a breach of 

minimum CET1 capital requirement (𝑀𝐶𝑖,𝑡) and for an insurer as a breach of its solvency ratio 

( 𝑆𝐼𝐼𝑖,𝑡). We perform two iterative loops of the solvency contagion channel to let the algorithm 

converging to a stable solution13.   

 
12 We test results by implementing the NEVA methodology of Bardoscia et al. (2019) and results do not differ.  
13 Most of the losses take places in the first round. 
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𝐿𝑖,𝑛,𝑡
𝑆𝐶 =  ∑ 𝐸𝑋𝑃𝑖,𝑗,𝑛,𝑡 ∗ 𝐿𝐺𝐷𝑖,𝑗,𝑛,𝑡 ∗ 𝑌𝑗,𝑛,𝑡

𝐽

𝑗

    𝑤ℎ𝑒𝑟𝑒 𝑖 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎 𝑏𝑎𝑛𝑘 𝑜𝑟 𝑖𝑛𝑠𝑢𝑟𝑒𝑟 

𝑤ℎ𝑒𝑟𝑒  𝑌𝑗,𝑛,𝑡 = 1 𝑖𝑓 
𝐶𝐸𝑇1𝑖,𝑛,𝑡

𝑅𝑊𝐴𝑖,𝑛,𝑡
< 𝑀𝐶𝑖,𝑡  𝑜𝑟  𝑆𝐼𝐼𝑖,𝑡 < 1 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; 

2.3 Augmented Profit and Loss Distribution 

We aggregate results from the profit and loss distribution (𝑃𝐿𝑖,𝑛,𝑡
𝐸𝐶 ) estimated on direct economic 

exposures with the loss distribution on feedback and amplification mechanisms (𝐿𝑖,𝑛,𝑡
𝐹𝐴 ) to 

derive the final profit and loss distribution augmented with financial contagion (𝑃𝐿𝑖,𝑛,𝑡
𝑇𝑂𝑇).  

𝑃𝐿𝑖,𝑛,𝑡
𝑇𝑂𝑇 = 𝑃𝐿𝑖,𝑛,𝑡

𝐸𝐶 + 𝐿𝑖,𝑛,𝑡
𝐹𝐴   𝑤ℎ𝑒𝑟𝑒 𝐿𝑖,𝑛,𝑡

𝐹𝐴 = 𝐿𝑖,𝑛,𝑡
𝐹𝑆 + 𝐿𝑖,𝑛,𝑡

𝑆𝐶   

2.4 Balance Sheet Accounting 

Balance sheets have been updated at each step of the methodology in order to derive a stock-

flow consistent set of outputs and thus model feedback and amplifications as a function of the 

changes in firms’ solvency position.   

The stochastic approach used to model firms’ P&L leads us to derive (n) number of potential 

balance sheets for each firm (i) in each time period (t); where n equals to the number of 

simulations performed (20.000). In this respect, we aim at updating the following set of balance 

sheet variables according to a three-step sequential approach following the propagation 

channels described in Section 2.1 and Section 2.2. The stock-flow consistent balance sheet 

accountings are summarized in Appendix A. 

The starting step (S=0) is the original starting conditions of a firm (i) at time (t), that is, actual 

balance sheet data to be updated, respectively for: 

Banks: total assets (TA), risk weighted assets (RWA), CET1 and TIER1 capital and capital 

ratios as well as leverage ratio (LR).  

Insurers: total assets (TA), total liability (TL), capital also defined as own funds (OWF), 

solvency capital requirements (SCR) and solvency ratio (SII). 

Starting balance sheets (S=0) are collected from stress testing and supervisory COREP and 

FINREP templates. Step1 (S=1) consists in deriving the distribution of a firm’s balance sheet 

(across n simulations) conditional to the estimated stochastic profit and loss shocks (𝑃𝐿𝑖,𝑛,𝑡
𝐸𝐶 ). 

In this respect, we adjust banks’ risk-weighted assets (𝑅𝑊𝐴𝑖,𝑛,𝑡
1 ) by the P&L shock (𝑃𝐿𝑖,𝑛,𝑡

𝐸𝐶 ) 
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which is proxied by an average bank/time-specific risk weight calculated as (
𝑅𝑊𝐴𝑖,𝑡

0

𝑇𝐴𝑖,𝑡
0 )14. 

Subsequently, we update the network of exposures (𝐸𝑋𝑃𝑖,𝑗,𝑛,𝑡
𝑆+1 ) to keep track of the defaulted 

exposures and thus avoid overestimating fire-sales spillovers. Next, feedback and amplification 

mechanisms are introduced as a function of Step1’s outputs. First, we model fire-sales 

spillovers since the impact propagates in financial markets in the short-term (days and weeks), 

whereas solvency contagion is the result of insolvency procedures, which take place in the 

medium-term (quarters)15. Hence, Step 2’s outputs (S=2) are derived using the fire-sale loss 

distribution (𝑃𝐿𝑖,𝑛,𝑡
𝐹𝑆 ), i.e. substituting 𝑃𝐿𝑖,𝑛,𝑡

𝐸𝐶  in the set of equations as well as by deducting the 

amount of assets sold (𝑄𝑖,𝑛,𝑡
∗ ). Similarly, Step3’s outputs (S=3) are fed with the solvency 

contagion loss distribution (𝑃𝐿𝑖,𝑛,𝑡
𝑆𝐶 ), and all the variables are updated as in Step 1. At the end 

of this final step, we compute the balance-sheet equilibrium for each firm (i) in each simulation 

(n) and time period (t). Hence, we derive a distribution for each balance sheet variable.  

This procedure is consistently applied to banks and insurers’ balance sheets, although for 

insurers we also model the liability side (𝑇𝐿𝑖,𝑛,𝑡
𝑆+1) since own funds (𝑂𝑊𝐹𝑖,𝑛,𝑡

𝑆+1) are derived as the 

difference between (𝑇𝐴𝑖,𝑛,𝑡
𝑆+1) and (𝑇𝐿𝑖,𝑛,𝑡

𝑆+1 ). This is due to the fact that insurers via asset-liability 

management or derivative contracts are able to smooth the shock to capital by 

adjusting/reducing simultaneously the liability side. This liability adjustments are modelled 

through the Gamma parameter (𝜸𝒊,𝒕) which captures insurer-specific time-variant market-risk-

sensitivities. Hence, we assume a full passthrough (𝜸𝒊,𝒕 = 𝟎) of the shock to capital in Step1 

and Step3, since the shock is transmitted via corporate defaults, whereas a partial passthrough 

(𝜸𝒊,𝒕 > 𝟎) in Step 2, when shocks are modelled via mark-to-market losses and market risk 

sensitivities do matter. Section 3.4 will discuss the calibration of the Gamma parameter.    

 

 

 

 

 
14 This assumption leads us to conservative regulatory ratio estimates (CET1r) since the methodology by 

construction overestimate post shock RWAs especially in the tail of P&L distribution. More risky obligors (with 

high probability of default) default more often compared to less risky obligors (with low probability of defaults), 

thereby determining this overestimation RWA bias. Nonetheless, in this way we address the critique posed by 

Acharya et al. (2014) which highlight that banks may underestimate their risk-weights given the average risk 

weight appears unconnected with their actual risk.  
15 We need to acknowledge that with the post GFC regulatory reforms, resolution authorities may react very 

quickly and bail-in an institution over the weekend. Even in that case, it will take place at closed markets once 

information has already spread, that is, when likely fire-sales have already taken place.   
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3. Data and Model Calibration 

This section presents the key inputs we use to calibrate the model, respectively real exposure 

data, the set of risk parameters to model counterparty default risk, and the price impact 

functions we adopt to quantify fire-sales spillovers. The data collection spans from Q4-2019 

till Q1-2023.  

3.1 Network of Exposures  

We rely on several supervisory data sources to calibrate the methodology and so model UK 

banks and UK insurers’ solvency risk as well as feedbacks and amplification mechanisms. The 

aim is to reconstruct the UK banking and insurance systems’ exposure network across countries 

and sectors of the economy as well as the financial network of relationships among UK banks 

and UK insurers so as to model how economic shocks get amplified and transmitted via fire-

sales and financial contagion16.  

The UK financial system here described is composed of 9 major UK banking groups as well 

as 24 UK life and non-life insurance groups. Table 1 reports key summary statistics for the 

asset side coverage of the UK exposure network and its decomposition across sectors, 

jurisdictions and asset type. The UK financial system’s network of exposures amount up to 

£4593 billion in Q1-2023, respectively £3714 of assets owned by UK banks and £879 by UK 

insurers. The sectoral decomposition highlights how UK banks are more exposed to households 

(HH) and non-financial corporates (NFC) than UK insurers, which are mostly invested in assets 

issued by financial corporations (FC) and credit institutions (CI). Moreover, we can see that 

UK banks diversify more their investments outside the UK than UK insurers, which tend to 

invest mostly into asset issued by UK firms. In the end, UK banks’ exposures are mostly in 

form of loans to corporates and households (£2875 billion), and £839 billion in the form of 

security exposures, preferably bonds (£731 billion) over equity instruments (£108 billion). 

Contrary, the UK insurers’ network of exposure is composed of only security exposures, mostly 

equity (£618 billion) over bonds (£261 billion).     

Overall, the exposure network capture roughly 50% of UK Banks’ total assets as well as 70% 

of UK insurers’ total assets for the selected sample of firms, making our analysis well-

representative of the whole UK banking and insurance systems. In the end, the financial 

network of bilateral exposures among and between UK banks and UK insurers is relevant for 

 
16 Obligors have been mapped by country according to the location of incorporation.  
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the direct transmission of shocks between the two systems since it amounts up to £115 billion 

in Q1-2023. 

Table 1 – Exposure Coverage and Decomposition by Sector, Area, and Asset Class 
Amounts in £ Billion 

ASSET 2019 2019 2019 2020 2020 2020 2023 2023 2023 

NETORK SYSTEM BANK INS SYSTEM BANK INS SYSTEM BANK INS 

EXPOSURE 4023 3150 873 4125 3264 861 4593 3714 879 

NFC 865 687 178 814 643 171 814 689 124 

FC 694 425 269 698 425 273 952 631 321 

CI 580 279 301 597 308 290 743 404 338 

GG 592 468 125 625 498 127 596 500 95 

HH 1273 1273 / 1374 1374 / 1454 1454 / 

DOMESTIC 2476 1775 701 2429 1746 683 2534 1831 703 

FOREIGN 1544 1371 172 1693 1515 178 2054 1877 177 

LOAN 2404 2404 / 2535 2535 / 2875 2875 / 

BOND 923 600 324 980 649 331 992 731 261 

EQUITY 696 147 550 610 80 530 726 108 618 

Source: stress testing data, supervisory COREP templates C.27 and C.28, and FINREP F.20.04.    

Next, we present a set of exposure-based statistics highlighting the distributional features of 

the network. In total we capture in Q1-2023 exposures to 88.784 different counterparties 

located across countries and belonging to various sectors of the economy. Most of them 

(87.063) belong to UK banks’ portfolios, whereas 7491 are the set of UK insurers’ 

counterparties. This is due to the fact that UK insurers’ portfolio are made of securities which 

are issued by a relative small and homogeneous set of large and quoted firms. Contrary, UK 

banks’ portfolios are also materially exposed via the loan book, in which we capture exposures 

to large, but also mid and small corporates, which are not quoted. In this respect, we can see 

that the mean exposure amount is much smaller (£18 million) for banks than for insurers 

(£117), further corroborating the intuition above provided. This difference holds across 

different percentile of the exposure distribution. Another important distributional feature we 

want to highlight is the degree of concentration risk and overlapping portfolios in the system 

since they directly affect the severity and probability (skewness) of the system’s capacity to 

experience extreme negative stress events.   Hence, the 10% largest counterparties – SHARE 

90th percentile – accounts for 89% of total UK banks’ exposures and 83% of UK insurers’ 

exposures, highlighting a high degree of concentration risk. Similarly, the share of exposures 

that are overlapping across each pair of banks’ and insurers portfolios amount to 37% of total 

exposures, with a relative higher share for UK insurers (49%). This is due to the fact that 
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insurers are exposed to a narrower set of counterparties than banks, that is, those counterparties 

which issue a security. In the end, we compute the share of overlapping portfolio of exposures 

between the two sectors whose average is close to 34%. 

 

Table 2 – Granular Exposure Distribution, Concentration Risk and Overlapping Portfolios 
Amounts in £ Million 

ASSET 
DISTRIBUTION 2019 2019 2019 2020 2020 2020 2023 2023 2023 

NETWORK SYS BANK INS SYS BANK INS SYS BANK INS 

N_CP 79910 76814 7245 99933 97790 7320 88784 87063 7491 

MEAN 29 19 121 23 15 118 28 18 117 

MEDIAN 0.8 0.7 1.8 0.5 0.5 1.7 0.6 0.6 1.0 

90th percentile 14 11 114 9 7 107 14 12 87 

97th percentile 94 68 536 67 48 512 90 69 481 

99th percentile 373 260 1666 283 191 1617 338 239 1499 

SHARE 90th percentile 87% 88% 82% 88% 90% 82% 88% 89% 83% 

SHARE 97th percentile 73% 74% 67% 75% 76% 67% 73% 74% 70% 

SHARE 99th percentile 58% 59% 55% 59% 60% 55% 57% 57% 57% 

OVERL.  PORT. 42% 39% 55% 41% 39% 54% 37% 37% 49% 

Source: stress testing data collection, supervisory COREP templates C.27 and C.28, and FINREP F.20.04.    

3.2 Risk Factors 

In order to model stochastically the set of obligors’ defaults and quantify losses at default for 

each exposure and counterparty, we collect from supervisory COREP template C.09 time-

variant (quarterly), country and sector-specific risk factors such as 1-year ahead probability of 

defaults (PD) as well as loss-given-default (LGD) parameters. These parameters are matched 

to each counterparty in the system and represent the key inputs to quantify economic credit and 

market risk losses over time, which reflect current economic and financial conditions in that 

specific quarter.  

Figure 1a depicts the weighted average probability of default and loss given default parameters 

(weighted by exposure amounts), which highlights the evolution of counterparty risk in the 

system since Q4-2019 till Q1-2023. Moreover, we have to acknowledge the presence of strong 

heterogeneity across sectors and countries, which may determine non-linear effects across 

reporting firms and time periods (heterogeneous outcomes). 
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Figure 1: Risk Factors 

    Panel (a)      Panel (b) 

            Average PD and LGD Parameters             Dependence Structure by Sector-Country Pairs 

  
Source: COREP C.09 

The other key ingredient to model counterparty default risk is the calibration of obligors’ 

dependence structure, that is, to which extent a country-specific corporate default event is 

correlated to another country-specific corporate default event (Glasserman 2004; Covi et al, 

2022). In this respect, we estimate a correlation structure or dependence structure of corporate 

defaults across all sector (4) and country (134) pairs. We estimate this dependence structure as 

time-invariant correlation structure of probability of defaults over the period Q1-2018 to Q1-

2023 relying on COREP supervisory data template C.09.  Figure 1b summarizes the 

distribution of correlation coefficients for all sector-country pairs, which resembles a normal 

distribution, with a positive mean/median coefficient close 0.014. This feature implies that 

shocks to corporates (default events) can be to the same extent positive or negative correlated, 

reflecting the heterogeneous effects of macro and financial shocks across sectors and countries 

(Dullman et al. 2008; Lopez, 2004). This dependence structure determines how cluster of 

corporate defaults materialize across simulations for banks’ and insurers portfolios and the 

shape of the (left) tail of their profit and loss distribution (severity and probability of tail 

events).    

3.3 Profit and Loss Distribution 

Overall, we derive a net profit and loss distribution which takes into account two components, 

the estimated economic losses from direct exposures and gross realized profits derived from 

actual reported data. Panel (a) of Figure 2 presents the estimated profit and loss distributions 

for the UK banking system, thereby showcasing the negative correlation between realized 

profits and losses across scenarios, which are ranked from left to right by the loss severity. 

Banks’ realized gross profits range between £20 and £40 billion, and most of the variation takes 

place in the 75-100th percentile of the loss distribution.  In the end, panel (b) reports the net 

profit and loss distribution, in which realized losses are adjusted by gross realized profits.   
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Figure 2: UK Banking System’s Net Profit and Loss Distribution 

                                   Panel (a)                   Panel (b) 

          Estimated Loss and Profit Distributions           Net Profit and Loss Distribution  

 
Note: The net profit and loss distribution is ranked by the loss severity of the simulation from left to right and 

approximates operating profits. 

3.4 Fire-Sales Price Impact Function 

The modelling of feedbacks and amplification mechanisms involve the estimation of fire-sales 

spillovers so as to quantify direct and indirect losses on the sales of assets at a discounted price 

as well the re-evaluation effects on those security instruments held. One of the key challenges 

to accurately estimate the haircut applied to each security sold is the calibration of the price 

impact function. As shown in Fukker et al. (2022), using a homogeneous price impact function 

leads to an overestimation of fire-sales spillovers. To avoid that, we implement a heterogeneous 

price-impact function which differs across the characteristics of the security (bond vs equity, 

sector, country, rating, size), the volume sold (q<50 Million, 50M<q< 100 M, q >100M) as 

well as the severity or percentile of the fire-sales event in the system (percentile 5%, 10%, 15%, 

etc). We rely on Fukker et al. (2022) to calibrate the price impact functions according to this 

set of characteristics17. An important remark concerns the conditioning of the price impact to 

the severity of the fire-sales event. To achieve that, we first compute the total amount of asset 

sales in the system in each simulation and then we rank them and allocate into specific 

percentile according to their relative severity. Hence, the price impact will be also a function 

of the quantity of assets sold in the system across all asset classes so as to make this a function 

of the overall market conditions.    

Figure 3 presents the full distribution of theoretical price impact parameters for bond and equity 

instruments for the full set of characteristics above discussed.  We can see that bond instruments 

may experience a price impact up to 5% in the most extreme cases, whereas equity instruments 

 
17 We use Fukker et al. (2022)’s estimates for three main reasons. First of all, it is the only paper that provides 

estimates of price dynamics conditional to the characteristics above mentioned. Moreover, from an empirical 

perspective, its data coverage is the most comprehensive in terms of panel and time series dimension.  Last, the 

set of asset classes covered by Fukker et al. (2022) perfectly covers the set of asset classes held by UK banks and 

UK insurers, thereby representing a good fit for our application.  
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may lose up to 60% of their initial value. Clearly, the large share of parameters are calibrated 

in the space of 0-1% for bond and 0-20% for equity instruments.  

Figure 3: Price Impact Distribution for Bond and Equity Securities 

Panel (b) – Bond     Panel (b) – Equity 

 
Source: Fukker et al. (2022) and authors’ calculations.  

Note: Price Impact is estimated by Asset Class (Bond and Equity Instruments), by Issuer Sector (GG, NFC, FC, 

CI), by Issuer Country (CTY), By Rating (High, Medium, Low), By Firm Size (Large, Mid and Small), by 

percentile of the historical distribution (0.05, 0.1, 0.15 etc), and by Volume of Sales (<50M, and >50M & <100M, 

>100M).  

 

3.5 Insurers’ Market Risk Sensitivity Parameter 

For modelling the transmission of losses to insurers’ capital position, we should not only model 

the revaluation of the asset side, but also consider how the liability side would be affected 

conditional to that shock. In fact, insurers via asset-liability management or derivative contracts 

are able to offset a large share of the capital shock by reducing liabilities.  

To take this smoothing factors into account, we collect and rely upon the Prudential Regulatory 

Authority (PRA) data collections on SII market risk sensitivities. In this respect, this template 

collects insurer-specific time-variant market risk sensitivity parameters conditional to multiple 

shocks in order to model how a shock to the asset side is offset by a reduction of the liability 

side. The set of sensitivities cover negative severe shocks to equity and property prices, interest 

rate risk, rating downgrades, exchange rates, and credit spreads18. 

Since in the methodology we would use these parameters only to model the mark-to-market 

loss transmission to insurers’ balance sheet, that is, focusing exclusively on a subset of the full 

range of sensitivities, we derive a conservative estimate for an average insurer-specific time-

variant market-risk-sensitivity parameter – Gamma (𝛾𝑖,𝑡) – which collates all the relevant 

information for our analysis.  Figure 4 depicts the distribution of Gamma, which ranges 

between 84% and 98%, thereby implying a high degree of liability adjustment. Hence, the 

passthrough to capital losses of asset sales is materially affected by a reduction in the size of 

an insurer’s liability.  

 
18 See PRA “Solvency II: Data Collection of Market Risk Sensitivity”. 

https://www.bankofengland.co.uk/prudential-regulation/publication/2017/solvency-2-data-collection-of-market-risk-sensitivities-ss
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Figure 4: Distribution of Market Risk Sensitivity Parameters – Gamma (𝛾𝑖,𝑡) 

 
Source: PRA SII Market Risk Sensitivities, authors’ calculations. 

 

4. Results 

4.1 Net Profit and Loss Distribution 

The methodology has been designed and calibrated to derive a net profit and loss distribution 

(P&L) for each UK bank and UK insurer in our sample at each point in time (quarterly) over 

the period Q4-2019 till Q1-2023. The distribution is based on 20.000 Monte Carlo simulations 

conditional to a central scenario resembling current economic and financial conditions 

experienced in that quarter. Hence, we aggregate by each single simulation (n), the estimated 

P&L of each bank/insurer in our sample so as to derive a net P&L distribution for the UK 

financial system and study financial stability implications using a system-wide perspective19.  

Figure 5a displays the net profit and loss distribution for the UK financial system as of Q1-

2023 highlighting the potential impact that feedback and amplification mechanisms may 

produce. In fact, when taking into account F&A losses, the P&L distribution shifts to the left, 

both curbing the potential upside (net profits) firms may realize as well as exacerbating the 

severity of negative realizations (extreme losses) and their likelihood. On the one hand, Figure 

5b zooms into those simulations with realized net profits (right tail), on the other hand, Figure 

5c zooms into those simulations with realized net losses (left tail) or stress events. In the former, 

we show that F&A mechanisms shift materially the net profit distribution to the left, thereby 

reducing the system’s overall profitability as well as the severity of extreme positive 

realizations. Contrary, the latter highlights that F&A mechanisms shift materially the net loss 

distribution to the left, thereby increasing the likelihood of realizing larger amounts of losses 

(fatter tail) as well as the severity of extreme stress events (longer tail). 

 
19 The P&L distribution we derive is net, and not gross, as discussed in Section 2, since in each simulation firms 

realize both gross profits and losses. Thus, we compute the net realized outcome. 
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Overall, these charts summarize the main output of the methodology, that is, the distribution 

of shocks – in terms of severity and probability – the UK financial system may experience in 

a given period of time using actual data on banks’ and insurers’ portfolio of loan and security 

exposures, their balance sheet information and a set of risk parameters reflecting the prevailing 

macro and financial conditions at time (t). In the following sections we will dig deeper into the 

left tail of the net profit and loss distribution in order to assess the severity and likelihood of 

potential tails events affecting the UK financial system and thus explain the drivers and 

contribution of feedback and amplification mechanisms to the realization of stress tail events, 

their evolution over time and correlation across firms.  

Figure 5a: Net Profit and Loss Distribution as of Q1-2023 

 
 

Figure 5b: Net Profit Distribution as of Q1-2023 – Right Tail 

 
 

 

 

Shorter Right Tail 

(Lower Profits) Lower Profitability 

Net 
Losses 

Net 
Profits 
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Figure 5c: Net Loss Distribution as of Q1-2023 – Left Tail 

Note: the chart depicts the net profit and loss distribution for the UK financial system of banks and insurers for 

Q1-2023 based on 20.000 simulations.  

 

4.2 Risk Metrics 

We provide a set of risk metrics which target different percentiles of the P&L distribution of 

the UK Financial System in order to disentangle how financial stability risks have been affected 

over time by changes in the network structure – portfolio size and distribution of exposures – 

as well as in counterparty risk – obligors’ probability of defaults (PD) and exposure-specific 

loss given default parameters (LGD), and realized gross profits (RGP).  

Table 3 reports respectively the median of the profit and loss distribution, the mean or Capital 

at Risk estimates (CaR) as well as average tail losses conditional to the 90th, 95th and 99th 

percentile, also defined as Conditional Capital at Risk (CcaR) or expected shortfalls. In this 

respect, we can see that the median and CaR outcome of the P&L distribution is positive, 

thereby being an indicator of how profit expectations change over time. Contrary, CCaR 

estimates are negative, tracking respectively tail risk developments.    

Overall, we can assess that the UK Financial System since the Covid-19 Pandemic (2020-21) 

has experienced an improvement in both profit expectations and tail losses. We thus quantify 

the severity of extreme stress events which with 1% probability (99th percentile) may lead on 

average to £133 billion loss in the system.   

In the end, we report the ratio of potential expected losses by percentile over total exposures in 

order to measure the risk per unit of exposure. Since the Covid period, across all percentiles of 

the distribution, the risk per unit of exposure has materially decreased passing for extreme 

stress events (CCaR99) from -3.6% in 2021 to -2.8% in 2023, highlighting a relevant de-risking 

trend. 

Longer Left Tail 

(Larger Losses) 

Fatter Left Tail 

(Higher Likelihood) 
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Table 3: UK Financial System’s Capital at Risk and Conditional Capital at Risk Estimates 

LOSS (£ Bn) 2019 2020 2021 2022 2023 AVG 

MEDIAN 28.8 28.0 23.9 32.2 32.7 28 

CaR 14 12 7 17 18 13 

CCaR90 -31 -37 -45 -31 -27 -36 

CCaR95 -63 -72 -85 -67 -64 -73 

CCaR99 -127 -133 -147 -125 -122 -133 

EXPOSURE 3977 4053 4101 4173 4302 4113 

MEDIAN Rate 0.72% 0.69% 0.58% 0.77% 0.76% 0.7% 

CaR rate 0.35% 0.30% 0.16% 0.40% 0.42% 0.3% 

CCaR90 Rate -0.8% -0.9% -1.1% -0.7% -0.6% -0.9% 

CCaR95 Rate -1.6% -1.8% -2.1% -1.6% -1.5% -1.8% 

CCaR99 Rate -3.2% -3.3% -3.6% -3.0% -2.8% -3.2% 

Figure 5a reports the evolution of CCaR across quarters indexing = 100 at the beginning of the 

sample of the analysis as of Q4-2019. In this respect, potential expected losses across 

percentiles tend to co-move, although not perfectly, with the extreme tail (CCaR99) relative 

more stable compared to severe and medium stress events (95th and 90th).   

We also compares the evolution of the Median and Mean (CaR) of the distribution with 

CCaR99 index. CCaR99 index is also much more stable than the Median and CaR indexes, 

respectively. The economic intuition is that Median and CaR estimates as well as CCaR90 and 

CCaR95 are relatively more affected by changes in gross profits (positive realizations) 

compared to the extreme tail of the loss distribution (99th). This finding highlights that Tail 

Risk developments (CCaR) do not depend materially on banks’ profitability, whereas on other 

more structural risk factors such as changes in counterparty PD and LGD parameters as well 

as the network structure.   

Figure 5: Risk Developments 

Panel (a) - Tail Risk                   Panel (b) - Median and CaR  

  

 

4.3 Risk Channel Decomposition 

Propagation channels may play a different role across simulations depending on the percentile 

of the P&L distribution we look at. In this section we dig deeper and provide estimates on the 
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contribution of each propagation channel modelled in Section 2. Table 4 decomposes the set 

of risk metrics (Median, CaR, CCaR99) by propagation channel, respectively by losses and 

profits from economic exposures (ECL, ECP), and their net P&L outcome (EC) as well as by 

feedback and amplification channels, respectively fire sales (FS) and solvency contagion (SC). 

Losses from direct economic exposures (ECL) seems to explain roughly 8.6% of total 

contribution to the median outcome, and 19% for CaR, whereas in the tail (CCaR99) the 

contribution increases materially to 61.5%. Contrary, realized gross profits (ECP) explains a 

larger share of total contribution to the median and CaR metrics than CCaR99, respectively 

87.6% and 63% versus 4.9%. This finding highlights that correlated corporate defaults in the 

real economy are the key driver of tail risk developments, whereas firms’ profitability is not a 

major contributor to systemic risk. Firms’ profitability is the key determinant for median and 

average realized outcome severity, but in the tail it becomes less relevant.  

Table 4: Drivers of Median, CaR and CCaR99 for UK Financial System 

LOSS (£ Bn) CHANNEL 2019 2020 2021 2022 2023 AVG % 

MEDIAN ECL -3.0 -3.7 -3.4 -3.2 -3.6 -3.4 8.6% 

MEDIAN ECP 35 34 30 40 41 35 87.6% 

MEDIAN EC 32 30 26 36 38 31 / 

MEDIAN FS -1.9 -0.9 -1.0 -2.4 -2.5 -1.5 3.8% 

MEDIAN SC 0.0 0.0 0.0 0.0 0.0 0.0 0% 

MEDIAN TOT 28.8 28.0 23.9 32.2 32.7 28.4 100% 

CaR ECL -9.1 -10.4 -10.1 -8.7 -8.9 -9.6 19% 

CaR ECP 32 30 26 36 38 31 63% 

CaR EC 22.4 19.6 15.7 27.2 28.9 21.5 / 

CaR FS -8.5 -7.4 -9.0 -10.3 -10.8 -9.0 18% 

CaR SC -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.2% 

CaR TOT 13.8 12.2 6.7 16.9 18.0 12.5 100% 

CCaR99 ECL -94 -97 -98 -81 -79 -91 61.5% 

CCaR99 ECP 10.9 5.1 2.1 11.9 14.8 7.3 4.9% 

CCaR99 EC -83 -92 -96 -69 -64 -84 / 

CCaR99 FS -42 -40 -50 -55 -57 -49 33% 

CCaR99 SC -1.6 -1.5 -0.3 -0.3 0.0 -0.7 0.5% 

CCaR99 TOT -127 -133 -147 -125 -122 -133 100% 

Note: CaR refers to expected model outcome, whereas CCaR99 refers to expected shortfalls conditional to the 

99th percentile. 

Nonetheless, the severity of tail events is not exclusively determined by the realized severity 

of corporate defaults. Clearly, feedback and amplification mechanisms contribute to roughly 

33% of total CCaR99 estimates, and mostly through the fire-sales channel (32%), that is, via 

indirect contagion. This finding corroborates Poledna et al. (2021)’s conclusion that the 
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exclusion of the overlapping portfolios channel may lead to materially underestimate systemic 

risk estimates. Furthermore, we find the median outcome is unaffected by F&A effects, 

whereas for CaR developments it accounts for roughly 18% of total variation. This finding 

highlights that the materiality of financial stability risks do depend on firms’ simultaneous 

management actions (deleveraging process), which jointly determine the overall severity of the 

financial market turmoil (systemic stress). This result stems from the high degree of 

overlapping portfolio of exposures UK firms exhibit, determining a high likelihood of 

experiencing common shocks from direct economic exposures, but also a high likelihood that 

the security sold at discount would be held also from another UK bank or insurer. If this result 

provides evidence at a system-level, it may not always hold on a firm by firm basis. This is 

important to highlight since on a firm basis the severity realized in the n scenario may not 

coincide with the same percentile-specific severity at the system level given largest firms do 

have a stronger role in the determination of the system’s propensity to instability. With this 

intuition in mind, and knowing by construction that fire-sales are a function of the initial P&L 

shocks, it means that in expectations there could be idiosyncratic shocks to firms which require 

them to deleverage materially and thus contribute to fire-sale spillovers. However, those 

idiosyncratic shocks are not material enough to trigger a systemic event via this indirect 

contagion channel (𝐿𝑖,𝑠,𝑛,𝑡 
𝐹𝑆|𝑖𝑛𝑑

). Overall, Figure 6 summarizes the contribution of each risk channel 

across all simulations ranked from left to right according to their total severity. In this respect, 

the curvature of the function clearly shows that F&A mechanisms are a positive and increasing 

function of the P&L shock distribution (ECP-ECL).  

Figure 6: Drivers of the Profit and Loss Distribution for the UK Financial System 

 
Note: ECP refers to economic profits, whereas ECL to economic credit and traded risk losses. Moreover, FS refers 

to fire-sale losses and SC to solvency contagion losses. 

Median CaR CCaR99 
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4.4 Sector Decomposition 

In previous sections we have looked at the dispersion of the profit and loss distribution and at 

the drivers determining that dispersion at an aggregated system level. Contrary, in this section 

we break down the results by contribution of each sector, respectively the role of banks and 

insurers in determining systemic events. Figure 7 summarizes the overall contribution of the 

banking sector and the insurance sector to the median, CaR and CCaR99 estimates. On average, 

the UK banking system contributes to roughly 87% of the median P&L outcome, 95% of total 

CaR estimates, and 80% of CCaR99 estimates, against 81% of total exposure coverage in the 

system. Hence, UK banks per £ pound exposure tend to contribute to systemic risk (negative 

realizations) consistently with their exposure share.   

Figure 7: Decomposition of Risk metrics by Sector  

      Panel (a) – Median            Panel (b) – CaR   Panel (c) – CcaR99 

 

We dig deeper into each sector’s propagation channel contribution by risk percentile in order 

to highlight potential differences across sectors. Table 5 which resembles the structure of Table 

4, reports the breakdown by sector, respectively Panel (a) for banks and Panel (b) for insurers. 

UK banks’ results tend to align with the decomposition at the system level since they account 

for 80% of total exposures, and so drive the overall results. Moreover, banks and insurers’ 

realized profits contribution (ECP) to the median are quite close, respectively 88% and 86%, 

whereas their contribution to CaR estimates slightly differ, respectively 63.8% and 54.5%, with 

ECL relatively more material for insurers than banks. Nonetheless, the more we move into the 

tail, here captured by CCaR99 estimates, ECL becomes the highest contributor for both banks 

and insurers, respectively 60% and 68%, and fire-sales (FS) become the second largest factor, 

respectively explaining 33% and 25% of tail losses. Realized profits (ECP) show a relative low 

contribution to CCaR99, and for the insurer sector they have a negative sign, thereby 

highlighting a higher dispersion than banks in the tail. Finally, the solvency contagion channel 

(SC) tends to matter more for insurers than banks in % terms. The finding is partially explained 

by the modelling assumption we made in Section 2 on the calibration of Market Risk Sensitivity 
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parameter - Gamma. In fact, for the insurers, we have used a full pass through assumption of 

shocks to capital (𝛾𝑖,𝑡 = 0) when modelling shocks conditional to corporate defaults, that is for 

quantifying losses from ECL and SC, and a partial pass through assumption (𝛾𝑖,𝑡 > 0) when 

modelling fire-sales (FS). This result further corroborates the key role played by the fire-sales 

channel in potentially triggering tail events in the insurance sector.  

Table 5: Drivers of Median, CaR and CCaR99 

Panel (a) - UK Banking System 

LOSS (£ Bn) CHANNEL 2019 2020 2021 2022 2023 AVG % 

MEDIAN ECL -2.5 -3.1 -2.8 -2.8 -3.1 -2.9 8.2% 

MEDIAN ECP 30.0 29.4 25.8 35.3 36.6 30.6 88.1% 

MEDIAN FS -1.6 -0.6 -0.8 -2.1 -2.2 -1.3 3.7% 

MEDIAN SC 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 

MEDIAN TOT 24.8 24.2 20.7 28.6 28.8 26.5 100% 

CaR ECL -7.2 -8.3 -8.3 -7.3 -7.5 -7.9 18.2% 

CaR ECP 27.5 26.3 22.8 32.3 33.7 27.6 63.8% 

CaR FS -7.0 -6.3 -7.8 -9.2 -9.7 -7.8 18.1% 

CaR SC 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 

CaR TOT 13.3 11.8 6.7 15.7 16.5 11.9 100% 

CCaR99 ECL -73.6 -76.9 -81.0 -69.7 -68.2 -75.1 60%% 

CCaR99 ECP 12.0 7.0 4.4 12.5 14.4 8.7 6.9% 

CCaR99 FS -34.2 -32.6 -42.9 -48.9 -51.1 -41.6 33.1% 

CCaR99 SC -0.7 -0.4 -0.1 -0.2 0.0 -0.3 0.2% 

CCaR99 TOT -96 -103 -120 -106 -105 -108 100% 

Panel (b) - UK Insurer System 

LOSS (£ Bn) CHANNEL 2019 2020 2021 2022 2023 AVG % 

MEDIAN ECL -0.4 -0.6 -0.5 -0.3 -0.3 -0.4 8.5% 

MEDIAN ECP 4.8 4.6 3.9 4.3 4.7 4.3 86.5% 

MEDIAN FS -0.4 -0.2 -0.2 -0.3 -0.3 -0.3 5.0% 

MEDIAN SC 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 

MEDIAN TOT 3.9 3.8 3.2 3.6 3.9 3.7 100% 

CaR ECL -1.9 -2.1 -1.8 -1.4 -1.4 -1.7 26.8% 

CaR ECP 4.0 3.7 3.0 3.7 4.1 3.5 54.5% 

CaR FS -1.4 -1.1 -1.2 -1.1 -1.1 -1.1 17.6% 

CaR SC -0.1 -0.1 -0.1 -0.1 0.0 -0.1 1.1% 

CaR TOT 0.6 0.4 0.0 1.1 1.6 0.6 100% 

CCaR99 ECL -20.4 -21.0 -19.6 -16.5 -19.3 -19.1 68.1% 

CCaR99 ECP -1.1 -1.9 -2.3 -0.7 0.4 -1.4 5.1% 

CCaR99 FS -8.4 -7.2 -7.4 -6.5 -6.6 -7.1 25.3% 

CCaR99 SC -0.9 -0.9 -0.2 -0.2 0.0 -0.4 1.5% 

CCaR99 TOT -31 -31 -29 -23 -25 -28.1 100% 

Note: ECP refers to economic profits, whereas ECL to economic credit and traded risk losses. Moreover, FS refers 

to fire-sale losses and SC to solvency contagion losses. 
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In the end, Figure 8 depicts the final estimated profit and loss distribution decomposed by the 

contribution of propagation channel across simulations and by sector, respectively Panel (a) 

for banks and Panel (b) for insurers. The comparison of the distributions highlights that the tail 

of the loss distribution becomes steeper for the insurer sector than for the banking sector 

especially in the most extreme stress events. The growth rate in expected tail losses between 

the 95th and the 99th percentile is 80% for banks and 95% for insurers, whereas between the 

90th and 95th percentile is higher for banks (114%) than for insurers (84%).  

Figure 8: Drivers of the Profit and Loss Distribution  

  Panel (a) – Banks    Panel (b) - Insurers 

 

Note: ECP refers to economic profits, whereas ECL to economic credit and traded risk losses. Moreover, FS refers 

to fire-sale losses and SC to solvency contagion losses. 

4.5 Profit and Loss Correlation 

In this section we aim at exploring how results are correlated across propagation channels at a 

sectoral level and how correlations vary across percentiles of the loss distribution. Moreover, 

we highlight how the model generate correlated shocks and whether the banking and insurer 

sectors tend to be jointly affected by severe shocks. In this respect, Table 6 shows results on 

how profit and loss outcomes are correlated within each sector (Panel a) and between the two 

sectors (Panel b) across propagation channels. In Panel (a) we find that for both the banking 

sector and the insurer sector P&L generated from economic exposures (EC) are strongly and 

positive correlated with total losses (TOT), followed by the fire sales losses and total losses 

(FSL-TOT), as well as economic losses and fire sales losses (EC-FSL). Also solvency 

contagion losses are correlated with losses experienced in all the other propagation channels, 

although to a lesser extent than FSL and EC channels. Moreover, panel (b) highlights that losses 

experienced by the banking sector are positive and strongly correlated with losses experienced 

by the insurance sector across all simulations, although the degree varies according to the 

propagation channel pair we observe. For instance, we observe that the strongest correlation 

(0.97) for the fire-sale channel (FSL – FSL), for which the higher the FS losses experienced by 

banks, the higher FS losses experienced by insurers. Next, economic losses experienced by 
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banks tend to strongly co-move (0.88) with fire-sales losses experienced by insurers (EC - FSL) 

as well as total losses experienced by banks tend to strongly co-move with total losses 

experienced by insurers (TOT - TOT). Nonetheless, the degree of correlated outcomes may 

depend and thus vary according to the realized severity we look at, that is, on the part of the 

distribution we analyse. In Table 6 the sample of the analysis was the entire distribution, 

therefore the results were strongly driven by the positive realizations or median outcomes. 

Table 6: Loss Correlation between Propagation Channels and by Sector 

Panel (a) - Within Sector 

SECTOR CHANNEL SIM 2019 2020 2021 2022 2023 AVG 

BANK EC - TOT ALL 0.97 0.98 0.98 0.97 0.96 0.97 

BANK FS - TOT ALL 0.94 0.94 0.96 0.96 0.95 0.95 

BANK ECL - FS ALL 0.83 0.86 0.88 0.85 0.84 0.85 

BANK ECL - SC ALL 0.72 0.61 0.47 0.52 0.57 0.58 

BANK SC - TOT ALL 0.64 0.54 0.38 0.43 0.47 0.49 

BANK FSL - SCL ALL 0.44 0.35 0.23 0.28 0.32 0.32 

INS  ECL - TOT ALL 0.99 1.00 0.99 0.99 0.99 0.99 

INS FS - TOT ALL 0.94 0.95 0.94 0.91 0.89 0.93 

INS ECL - FSL ALL 0.93 0.94 0.93 0.89 0.85 0.91 

INS SC - TOT ALL 0.47 0.41 0.47 0.43 0.45 0.45 

INS ECL - SC ALL 0.42 0.35 0.40 0.36 0.37 0.38 

INS FS - SC ALL 0.26 0.21 0.22 0.16 0.17 0.20 

Panel (b) – Between Banking Sector and Insurance Sector 

SECTOR CHANNEL SIM 2019 2020 2021 2022 2023 AVG 

BANK vs INS FS - FS ALL 0.98 0.98 0.98 0.97 0.96 0.97 

BANK vs INS ECL - FS ALL 0.88 0.90 0.91 0.87 0.84 0.88 

BANK vs INS TOT - TOT ALL 0.92 0.91 0.89 0.83 0.75 0.86 

BANK vs INS FS - TOT ALL 0.87 0.88 0.86 0.82 0.75 0.83 

BANK vs INS ECL - TOT ALL 0.88 0.88 0.86 0.78 0.69 0.82 

BANK vs INS ECL - ECL ALL 0.88 0.89 0.86 0.77 0.66 0.81 

BANK vs INS FS - ECL ALL 0.85 0.86 0.85 0.78 0.69 0.80 

BANK vs INS SC - TOT ALL 0.66 0.56 0.46 0.41 0.40 0.50 

BANK vs INS SC - ECL ALL 0.65 0.56 0.43 0.40 0.37 0.48 

BANK vs INS SC - FS ALL 0.55 0.47 0.32 0.36 0.40 0.42 

BANK vs INS SC - SC ALL 0.51 0.39 0.51 0.22 0.20 0.37 

BANK vs INS ECL - SC ALL 0.29 0.18 0.20 0.10 0.10 0.17 

BANK vs INS FS - SC ALL 0.18 0.15 0.14 0.12 0.11 0.14 

Note: The table reports correlation coefficients for Losses measured across all propagation channels 

(CHANNEL): Economic Channel (EC), Fire-Sales (FSL), Solvency Contagion (SCL) and Total Losses (TOT). 

The correlation is quantified within the Banking Sector (BANK), within the Insurance Sector (INSURANCE), 

and between the two sectors (BANK vs INSURANCE).   SIM refers to the number of simulations considered, 

that is, correlation estimated across all realized simulations (n=20000) and ranked by the overall severity at the 

system level. 
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Contrary, in Table 7 we shed light upon the correlation degree in the tail of the distribution, 

that is, considering how losses correlate in the 90th, 95th and 99th percentiles. Panel (a) reports 

results for correlated losses between banks and insurers ranking the severity of simulations by 

the severity of total losses experienced at the system level (banks + insurers), whereas Panel 

(b) by ranking the severity of simulations by the severity of total losses experienced by each 

sector, respectively banks and insurers.   

We find that the degree of loss correlation decreases by comparing the whole distribution with 

selected tail percentiles. This highlights that positive outcomes tend to be more correlated than 

the negative ones. In fact correlation of total losses for banks and insurers in the 90th percentile 

is close to 0.48, almost half the size compared to the whole distribution (0.86). Moreover, the 

more we move into the extreme tail, the correlation tends to further decrease to 0.41 in the 95th 

percentile and to 0.21 in the 99th percentile. This pattern is similar across propagation channels. 

Remarkably, losses from the fire-sales channel become negatively correlated between banks 

and insurers in the 99th percentile, highlighting that the severity of fire sales outcomes differ 

between the two sectors across realizations in the tail. Overall, this result highlights that may 

exist specific idiosyncratic shocks in the extreme tail (whether corporate defaults or sales of 

assets) that may affect banks and insurers heterogeneously.  

In the end, Panel (b) further slices the correlation results by ranking the severity of extreme 

outcomes by the severity experienced from each sector. This exercise highlights that higher 

total losses of banks in the 99th percentile are associated with higher total losses for insurers 

(0.8), but not vice versa (0.00). This result is consistent with the correlation coefficient displayed 

for economic losses (EC), which has a similar behaviours are for total losses. This means that 

the shock distribution of corporate defaults has a limited overlapping between the two sectors in the 

tail. Nonetheless, the more we move out from the extreme tail, the severity of losses become 

more correlated consistently with what observed in panel (a).  In the end, FS losses are 

positively correlated across all percentiles of the distribution, highlighting the indirect 

contagion spillover effects between the two sectors due to price-mediated contagion. In the end 

we want to highlight that the degree of loss correlation tends to vary over time, and that it has 

progressively decreased, reaching the smallest value in Q1-2023. This results is consistent with 

the decreasing share of overlapping portfolio of exposures reported in Table 2. 
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Table 7: Loss Correlation between Propagation Channels by Percentiles (99th, 95th, and 90th) 

Panel (a) – Ranked by Overall System Severity 

SECTOR CHANNEL SIM 2019 2020 2021 2022 2023 AVG 

BANK vs INS TOT - TOT 90th  0.69 0.66 0.56 0.33 0.15 0.48 

BANK vs INS ECL – ECL 90th  0.67 0.67 0.58 0.34 0.08 0.47 

BANK vs INS FS – FS 90th  0.84 0.80 0.76 0.73 0.70 0.77 

BANK vs INS SC – SC 90th  0.70 0.48 0.53 0.22 0.20 0.43 

BANK vs INS TOT – TOT 95th 0.66 0.61 0.47 0.26 0.03 0.41 

BANK vs INS ECL – ECL 95th 0.62 0.65 0.51 0.30 0.04 0.42 

BANK vs INS FSL – FSL 95th 0.36 0.18 0.06 0.14 0.03 0.15 

BANK vs INS SCL – SCL 95th 0.77 0.53 0.56 0.31 0.30 0.49 

BANK vs INS TOT – TOT 99th 0.40 0.25 0.36 0.18 -0.15 0.21 

BANK vs INS ECL – ECL 99th 0.20 0.30 0.23 0.17 -0.18 0.14 

BANK vs INS FSL – FSL 99th -0.59 -0.23 -0.29 -0.43 -0.45 -0.40 

BANK vs INS SCL – SCL 99th 0.90 0.40 0.61 0.42 0.33 0.53 

 

Panel (b) – Ranked by Each Sector 

SECTOR RANK CHANNEL SIM 2019 2020 2021 2022 2023 AVG 

BANK vs INS BANK TOT - TOT 99th 0.88 0.85 0.79 0.89 0.62 0.80 

BANK vs INS INS TOT - TOT 99th 0.25 0.06 -0.02 -0.24 -0.06 0.00 

BANK vs INS BANK TOT - TOT 95th 0.82 0.76 0.76 0.75 0.53 0.72 

BANK vs INS INS TOT - TOT 95th 0.47 0.36 0.24 -0.03 -0.18 0.17 

BANK vs INS BANK TOT - TOT 90th  0.82 0.81 0.71 0.60 0.42 0.67 

BANK vs INS INS TOT - TOT 90th  0.64 0.56 0.47 0.28 0.13 0.42 

BANK vs INS BANK EC - EC 99th 0.82 0.88 0.72 0.85 0.60 0.77 

BANK vs INS INS EC - EC 99th 0.21 0.22 0.01 -0.19 -0.09 0.03 

BANK vs INS BANK EC - EC 95th 0.80 0.79 0.75 0.73 0.52 0.72 

BANK vs INS INS EC - EC 95th 0.45 0.43 0.28 0.01 -0.20 0.19 

BANK vs INS BANK EC - EC 90th  0.80 0.82 0.73 0.58 0.34 0.65 

BANK vs INS INS EC - EC 90th  0.63 0.59 0.48 0.25 0.06 0.40 

BANK vs INS BANK FS - FS 99th 0.28 0.43 0.17 0.48 0.53 0.38 

BANK vs INS INS FS - FS 99th 0.58 0.62 0.47 0.35 0.41 0.49 

BANK vs INS BANK FS - FS 95th 0.59 0.39 0.40 0.51 0.44 0.46 

BANK vs INS INS FS - FS 95th 0.51 0.48 0.39 0.34 0.24 0.39 

BANK vs INS BANK FS - FS 90th  0.87 0.84 0.80 0.80 0.79 0.82 

BANK vs INS INS FS - FS 90th  0.80 0.76 0.74 0.73 0.67 0.74 

BANK vs INS BANK SC - SC 99th 0.97 0.65 0.71 0.76 0.61 0.74 

BANK vs INS INS SC - SC 99th 0.60 0.11 0.29 -0.06 0.04 0.20 

BANK vs INS BANK SC - SC 95th 0.80 0.59 0.69 0.77 0.54 0.68 

BANK vs INS INS SC - SC 95th 0.67 0.40 0.50 0.19 0.16 0.38 

BANK vs INS BANK SC - SC 90th  0.78 0.59 0.59 0.38 0.37 0.54 

BANK vs INS INS SC - SC 90th  0.69 0.45 0.52 0.22 0.20 0.42 

Note: The table reports correlation coefficients for Losses measured for the same propagation channel 

(CHANNEL): Economic Channel (EC), Fire-Sales (FSL), Solvency Contagion (SCL) and Total Losses (TOT). 

The correlation is quantified between the two sectors (BANK vs INS).  SIM refers to the number of simulations 

considered, that is, correlation estimated according to 99th, 95th and 90th percentiles of the profit and loss 

distribution ranked by total loss experienced by the Banking System (RANK = Bank) or by Insurance System 

(RANK = Ins).   

4.6 Systemic Event Probability 

In this section we aim at exploring how the severity of the realized outcomes is correlated on a 

firm-by-firm basis in the tail, thereby capturing firms’ tail event severity correlation. Thus we 

compute the conditional tail event probability (𝐶𝑇𝐸𝑃𝑟) defined as the probability of firm j’s 

tail event severity in scenario s and at time t (𝑃𝐶𝑇𝑗,𝑠,𝑡) being equal to firm i’s tail event severity 
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in the same scenario s and time t (𝑃𝐶𝑇𝑖,𝑠,𝑡) conditional to firm i experiencing a tail event of 

severity 90𝑡ℎ, 95𝑡ℎ , 99𝑡ℎ.   

𝐶𝑇𝐸𝑃𝑟𝑖,𝑗,𝑡|𝑝𝑐𝑡 = Pr(𝑃𝐶𝑇𝑗,𝑠,𝑡 = 𝑃𝐶𝑇𝑖,𝑠,𝑡|𝑃𝐶𝑇𝑖,𝑠,𝑡 = (90𝑡ℎ, 95𝑡ℎ , 99𝑡ℎ))    

This probabilistic risk measure tells us how likely two firms may experience jointly a tail event 

of the same realized severity (90𝑡ℎ, 95𝑡ℎ , 99𝑡ℎ), that is, the likelihood of negative severe 

correlated outcomes on a firm-basis conditional to the fact that a firm has experienced a tail 

event. In this respect, Figure 9a depicts the distribution of conditional tail event probabilities 

(𝐶𝑆𝑅𝑃𝑟) estimated across all three severity percentiles (90𝑡ℎ , 95𝑡ℎ , 99𝑡ℎ) for all firm-pairs and 

for all time periods. Overall, we can see that the distribution is centred around 0.74, implying 

that a random firm j has a probability of 74% to experience a tail event of the same severity of 

firm i’s when firm i faces a tail event. We highlight that 90% of the mass of the distribution 

belong to the interval 40%-97%, thereby implying a high degree of tail event correlation. 

Next, Figure 9b summarizes the Conditional Tail Event Probability according to the realized 

severity of the tail event. Clearly, extreme tail events (pct99) tend to be less correlated across 

pair of firms (median ~ 58%) than medium (median ~ 76%) and severe (median ~ 0.76%) tail 

events, nonetheless the conditional probability is still high and material. This implies that with 

3.8% of probability we may have a severe systemic event (0.05 * 0.76) and with 0.58% of 

probability we may have that an extreme systemic event realize (0.01 * 0.58). All these 

evidences corroborate that systemic events with various degree of severity may happen with a 

non-negligible probability20.  

In the end, Figure 9c isolate the impact of feedback and amplification mechanism on the 

likelihood of joint extreme stress events among UK banks and UK insurers. Without F&A 

mechanisms (ECL), the conditional tail event probability for extreme stress events (99pct) 

decreases from 58% to 10%. This finding highlights that that systemic events may take place 

without the presence of F&A mechanisms, but their role is fundamental in strengthening 

materially the loss correlation of financial firms. 

 

 

 
20 In the Appendix (chart A1 and A2), we shed light whether there is a higher likelihood of experiencing correlated 

tail events across firms belonging to the same sector, respectively among banks (BK_BK) and among insurers 

(INS_INS) or across firms of opposite sector, that is, between banks and insurers (BK_INS). Insurers’ joint tail 

event probability within sector and across sectors are very similar to each other (median = 73%/74%), whereas 

for banks it is higher within sector than across sectors (median = 82%). We also show that the systemic event 

probability has decreased in recent quarters, especially for extreme stress events. 
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Figure 9a: Conditional Tail Event Probability for Medium, Severe and Extreme Stress Events 

 

Figure 9b: Conditional Tail Event Probability - By Severity of Stress Event 

 
 

Figure 9c: Conditional Tail Event Probability without F&A for Extreme Stress Events (pct99) 

 

Note: “ECL” refers to Economic Credit Risk Losses, and “ECL+F&A” to total losses.  

Median 

Probability 

Probability 
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4.7 Fire-Sales Spillovers 

In this last section we provide insights into the drivers of fire sales spillovers by focusing on 

the severity of selling pressures and price impacts across asset class and percentiles. In Table 

2 we have shown that the UK financial system seems to be more exposed on bond instruments 

(£992 bn) than equity (£726 bn) and that banks’ portfolio tend to be more invested into bonds 

(£731 bn) than equities (£108 bn), while insurers are more invested into equities (£618 bn) than 

bonds (£261 bn). Moreover we have calibrated the fire sale mechanisms using a pro-rata 

approach, that is, by assuming an equal sale split across securities. Hence, if we had assumed 

homogeneous shocks and homogeneous firms’ starting conditions, we should have obtained 

that 57% of security sales (992 / (992+726)) are made of bond and that the remaining 43% are 

made of equity. However this is not the realized outcome since the overall selling pressure is a 

function of heterogeneous shocks and heterogeneous starting conditions. Moreover, the overall 

equilibrium also depends on which firm is forced and more inclined to de-leverage and on the 

firm-specific portfolio composition.  

In this respect, Table 8 summarizes the realized selling pressures by asset class and severity of 

the fire sale event conditional to a pro-rata approach. Hence we see that the UK financial 

system, according to a pro-rata approach, tends to sell more bonds over equity, respectively 

87% vs 13% of total security sold (Ratio %), and this result holds across different fire sale 

severities.  This is due to the fact that banks tend to deleverage more than insurers. Moreover, 

we can see that in the most extreme events (99th percentile), the UK financial system would 

sell 58% of their bond holdings and only 13% of their equity holdings.  The selling pressure 

materially decreases across percentiles, halving in the 95th percentile, and approaching 3.3% 

(3.1% + 0.2%) of total security sales in the 90th percentile.  

On the other hand, Table 9 summarizes the average realized price impact for bond and equity 

instruments. Conditional to the most extreme fire sale stress event (99th) the price of bond 

instruments would decrease on average by -1.6%, whereas equity instruments would 

experience an average price drop of -20.3%. Consistently, the price impact reduces by moving 

away from the 99th percentile. Overall, although the UK financial system deleverages by selling 

way more bonds than equities (6.3 times), the average price impact is much more material for 

equity than bond instruments (12.5 times). This implies that fire sales losses are driven mostly 

by realized mark to market losses on equity instruments. Overall, the pro-rata approach leads 

on average to a fire-sale loss rate (over total security portfolio holdings) of 3% conditional to 

an extreme stress event (CCaR99). FS loss rate estimates range between 2.4% and 3.6% across 
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quarters. Moreover, the FS loss rate tends to be higher for banks than for insurers, respectively 

5.5% vs 0.8%. This set of results corroborate Caccioli et al. (2024)’s findings whose fire sale 

estimates, which are based on a pro-rata approach conditional to the Bank of England stress 

scenario as initial shock, exhibit a FS loss rate close to 5.35% (£109 billion). We find lower 

estimates since the set of shocks we endogenously derive via Monte Carlo simulation method 

is on average 1/3 smaller than the Bank of England stress scenario21. 

Table 8: Estimated Selling Pressure based on a Pro-rata Approach 

(Amount in £ Billion) 

ASSET SIM 2019 2020 2021 2022 2023 AVG 

SHARE 

% 

Ratio 

% 

BOND 99th 494 531 601 559 550 558 58% 86% 

BOND 95th 129 281 296 151 90 224 23% 85% 

BOND 90th 13.6 52.8 47.9 0.8 0.5 30.0 3.1% 96% 
                    

EQUITY 99th 79 70 100 96 93 88 13% 14% 

EQUITY 95th 23 39 54 31 22 38 5.6% 15% 

EQUITY 90th 1.1 1.4 1.7 1.0 0.8 1.3 0.2% 4.2% 
                    

Note: The variable “Share %” refers to the amount of bond (equity) sold over total bond (equity) holdings, whereas 

the variable “Ratio %” refers to the amount of bond (equity) sold over the total amount of securities sold. 

Table 9: Estimated Realized Price Impact  

ASSET SIM 2019 2020 2021 2022 2023 AVG 

BOND 99th -1.6% -1.6% -1.6% -1.5% -1.4% -1.6% 

BOND 95th -0.9% -0.9% -0.9% -0.8% -0.8% -0.9% 

BOND 90th -0.5% -0.5% -0.5% -0.4% -0.4% -0.5% 
        

EQUITY 99th -21.5% -21.6% -19.6% -19.7% -19.0% -20.3% 

EQUITY 95th -17.7% -17.3% -15.6% -15.4% -14.9% -16.1% 

EQUITY 90th -13.6% -13.0% -11.6% -11.2% -11.0% -12.0% 
        

Note: The realized price impact is computed as the average price drop per asset class weighted by the volume sold 

of each asset class.  

Nonetheless, a pro-rata approach, as shown in Caccioli et al. (2024) among other papers in the 

literature, tends to overestimate FS losses since it does not minimize the price impact given 

that institutions are assumed to sell their illiquid assets too, which in turn leads to a more severe 

price impact. In this respect, using a pro-rata approach may overestimate FS losses by roughly 

30% relative to a pecking order approach in which only HQLA securities are sold (Caccioli et 

 
21 We take the expected 99th realized outcome of our loss distribution based on quarter-specific economic 

conditions which is on average £84 billion (see Table 4), whereas Caccioli et al. (2024)’s estimates are based on 

an extreme stress scenario resembling the Great Financial Crisis (initial shock ~ £124 billion). 
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al., 2024). For instance, Caccioli et al., (2024) relying on HQLA pecking-order approach 

estimate a FS loss rate of 3.7% (£75 billion) instead of 5.35% (£109 billion). Hence, the results 

we have shown in this Section 4 - based on pro-rata FS approach - could be considered 

relatively more conservative in terms of loss estimation.  

Given this evidence, we also test how our loss estimates would change conditionally to a fire-

sale mechanisms based on a HQLA pecking-order approach. In this respect, we design the least 

conservative pecking-order approach which consists in allowing institutions to sell only High-

Rated Government Bonds, that is, those securities with the lowest price impact function (i.e. 

Gilt or Tbill)22. This set of securities has a median and average price impact respectively of -

0.8% and -1%, with very few outliers smaller than -2%. Figure 10 reports the fire-sales losses 

for all simulations across all quarters for this counterfactual exercise and compare them with 

baseline estimates derived using the pro-rata approach. We see that FS losses in the most 

extreme realizations (99th percentile) can be smaller by 7.5 times (£49 billion / £6.5 billion). 

Nonetheless, the largest FS loss delta appears in the central part of the distribution, that is, in 

those least severe realizations. In fact, the more we move away from the extreme tail, the 

overestimation of FS losses may reach also multiples of 20x (£40 billion / £2 billion). Hence 

our fire-sale loss rate (over total security portfolio holdings) decreases from 3% (pro-rata) to 

0.4% (pecking-order HQLA). These two exercises and related loss rates may represent well the 

upper and lower bounds of potential FS losses. Hence, the realized outcome and impact to the 

system materially depend on the fire-sale strategy and behaviours financial institutions chose 

to adopt. Said that, we need to acknowledge that, although the pecking order approach is way 

less harmful from a financial institution’s solvency perspective, may not represent the most 

probable outcome as suggested by Jiang et al. (2017) and Schaanning (2016).  

Fire-sales events originate from sudden and herd behaviours of agents which combined 

together determine the severity of the market-specific reaction.  Agents’ behaviours in first 

place aim at off-loading those assets which are most likely (or expected) to experience a severe 

price decrease and that are prone to larger price swings. Furthermore, traders try to anticipate 

the market reaction or a severe price drop - before it is too late. In turn, these idiosyncratic 

behaviours generate in aggregate systemic pressures to the same asset class or type of securities 

(market, sector, country or risk-specific) since you aim to off-load them before anybody else 

does. According to the historical evidence, these herding behaviours, as described by Lo 

(2004), drives the market to unstable equilibria so as to trigger tipping points and thereby 

 
22 See Chart B in the appendix for this subset of price impact functions.  
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originating non-linear price dynamics. A clear and recent example was the severe dysfunction 

experienced by the UK government bond market in September 2022, when distressed forced 

selling of gilts by liability-driven investment funds (LDI), led to fire-sale dynamics which 

forced the Bank of England to introduce a temporary and targeted backstop gilt purchase 

facility to restore confidence and improve market functioning. This event clearly proved that 

fire-sale events may not only take place in those markets of highly risky and less liquid 

securities, but also in the HQLA high-rated government bond ones such as the Gilt market. 

Overall, Figure 10 framed the wide range of fire-sale event outcomes whose realized severity 

depends on a combination of behavioural and structural factors which are uncertain and 

unpredictable by nature. Given our financial stability angle, we base our main results on a pro-

rata approach since it provides conservative FS estimates and more accurate ones during period 

of stress (Jiang et al. 2017; Schaanning, 2016)23.  

Figure 10: Counterfactual – FS Losses based on HQLA Peking Order of High-Rated 

Government Bonds 

 

Note: estimates are based on 20.000 simulations and reported across all quarters. The sample of HQLA used for 

this exercise is a narrower set of all HQLA security universe hold by UK banks and UK insurers, precisely high-

rated government bonds so as to minimize the price impact derived from the deleveraging process.   

 

 

 

 

 
23 Using a pecking order approach based on risky assets would lead to even more conservative estimates (higher 

FS losses), though it is not a viable solution since the quantity of assets to be sold would not be sufficient to restore 

the targeted leverage constraint in the tail of loss distribution. 
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5. Sensitivity Analysis 

In this last section we test the implications of three main assumptions related to the modelling 

of fire sale dynamics, respectively i) the role played by heterogenous price impact function 

parameters, ii) the contribution played by the insurance sector in exacerbating fire-sales 

spillovers, as well as iii) the relevance of insurers’ market risk sensitivity parameter - Gamma. 

In order to highlight the marginal contribution of this set of assumptions, we perform 

counterfactual exercises and compare the loss outcome in the counterfactual with baseline 

results presented in Section 4. 

5.1 Heterogeneous Price Impact Functions 

We test how results change conditional on the adoption of a more homogeneous price impact 

function by removing the parameter capturing the Market Selling Pressure (𝑄𝑛,𝑡
∗ ), that is, losing 

information on the severity of the fire-sale event. Hence, we transform the quantile estimation 

into a linear estimation of the average effect across fire sales event severity.  

𝑃𝐼𝐹𝑠,𝑛,𝑡
∗ = 𝐹𝑠 (𝑄𝑠,𝑛,𝑡

∗ , 𝑄𝑛,𝑡
∗ ) → 𝑃𝐼𝐹𝑠,𝑛,𝑡

∗ = 𝐹𝑠 (𝑄𝑠,𝑛,𝑡
∗ ) 

Figure 11a highlights how total losses in the system conditional to this counterfactual exercise 

have changed relative to the baseline case (y axis) across affected simulations (15%) and plot 

them against total losses in each simulation in the baseline case (x axis). From the chart it is 

evident that the impact is heterogeneous across simulation severity. We find that, on average, 

the lower the severity of the simulation (x axis), the larger is the % variation in total losses. But 

we also find that for those simulations with a realized severity larger than £ -25 billion (medium 

stress), the impact is always negative, thereby leading to a potential underestimation of total 

fire sales losses (-13% to -50%) in the tail of the loss distribution.    

Next, we test how results change conditional on the adoption of a more homogeneous price 

impact function. We achieve this by removing the parameter capturing the Security-Specific 

Selling Pressure (𝑄𝑠,𝑛,𝑡
∗ ), that is, losing information on the security-specific volume of sales.  

𝑃𝐼𝐹𝑠,𝑛,𝑡
∗ = 𝐹𝑠 (𝑄𝑠,𝑛,𝑡

∗ , 𝑄𝑛,𝑡
∗ ) → 𝑃𝐼𝐹𝑠,𝑛,𝑡

∗ = 𝐹𝑠 (𝑄𝑛,𝑡
∗ ) 

Figure 11b highlights how total losses in the system based on this counterfactual exercise have 

changed relative to the baseline case (y axis) across affected simulations (16%) and plot them 

against total losses in each simulation in the baseline case (x axis). From the chart it is evident 

that also here the impact is heterogeneous across simulation severity. Consistently with the 

previous exercise, on average the lower the severity of the simulation (x axis), the larger is the 

percentage variation in total losses, with more positive outcomes than negative ones in the low 
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interval of the distribution (0 to -25bn). On the other hand, for those simulations with a realized 

severity higher than £ -65 billion, the impact is always negative, thereby leading to a potential 

underestimation of total fire sales losses (-2% to -11%) in the tail of the loss distribution.  

Overall, not considering the price impact heterogeneity due to market selling pressure as well 

as to security-specific selling pressure may lead to materially underestimate losses in the tail 

of the distribution as well as potentially overestimate losses when median-medium stress 

outcomes realize outcomes realize. 

Figure 11a: Counterfactual - Total Losses in the System relative to Baseline Estimates in Q1-

2023 conditional to Homogeneous Price Impact Function without Market Selling Pressure  

Figure 11b: Counterfactual - Total Losses in the System relative to Baseline Estimates in Q1-

2023 conditional to Homogeneous Price Impact Function without Security-Specific Selling 

Pressure 

 
Note: We remove outliers for visualisation purposes. Roughly 26% of simulations are affected by this assumption. 
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5.2 Insurance Sector Contribution to Market and Security-Specific Selling Pressure 

We test how results change conditional on the size and coverage of the financial system we 

model, that is, the contribution of the Insurance Sector to the determination of the fire sale loss 

outcome. To achieve this, we remove the contribution of the insurance system to the overall 

volume of sales, and we model the security-specific realized price impact functions (𝑃𝐼𝐹𝑠,𝑛,𝑡
∗ ) 

exclusively conditional to banks’ contribution to Market Selling Pressure (𝑄𝑛,𝑡
𝐵 ) and Security-

Specific Selling Pressure (𝑄𝑠,𝑛,𝑡
𝐵 ). 

𝑄𝑠,𝑛,𝑡
𝐵  = ∑ 𝑄𝑖,𝑠,𝑛,𝑡

𝐵

𝐼

𝑖

;     𝑎𝑛𝑑     𝑄𝑛,𝑡
𝐵  = ∑ 𝑄𝑠,𝑛,𝑡

𝐵

𝑆

𝑠

  

𝑓𝑜𝑟 𝐼 ∈ 𝑏𝑎𝑛𝑘𝑠,   𝑃𝐼𝐹𝑠,𝑛,𝑡
∗ = 𝐹𝑠  (𝑄𝑠,𝑛,𝑡

∗ , 𝑄𝑛,𝑡
∗ )   →    𝑃𝐼𝐹𝑠,𝑛,𝑡

𝐵 = 𝐹𝑠  (𝑄𝑠,𝑛,𝑡
𝐵 , 𝑄𝑛,𝑡

𝐵 )  

Figure 12 highlights how banks’ total losses conditional on this counterfactual exercise have 

changed relative to the baseline case (y axis) across affected simulations (10%) and plot them 

against total losses in each simulation in the baseline case (x axis). From the chart it is evident 

that the impact is always negative and heterogeneous across simulation severity. Consistently 

with the set-up of the fire-sale methodology, which models the price impact function as a 

positive function of quantity of securities sold, a reduction of the market selling pressure and 

security-specific selling pressure materially decreases the realized severity of the simulation.  

We notice that the most extreme events (higher than -£75 billion), are negatively affected, but 

not materially, consistently with what we have highlighted in Panel (a) of Table 7. The rationale 

behind this finding is that insurers’ extreme stress outcomes stemming from high economic 

credit risk losses (pct99) are not that correlated with banks’ extreme stress outcomes. Second, 

the price impact functions tend to reach the most severe price impact calibration exclusively 

relying on banks’ volumes of sales since banks are mostly invested in bonds rather than in 

equity, thereby contributing majorly to the determination of the asset-specific selling 

pressure24. Nonetheless, severe and medium stress events (< £-75 billion) are more materially 

impacted by insurers’ sale volumes, making banks’ medium fire-sale events (90th) become 

more severe stress events (95th) via price-mediated equity contagion. Overall, we can conclude 

that limiting the analysis to UK banks’ fire-sale volumes in the determination of the price-

impact may lead us to materially underestimate losses across all percentiles of the loss 

distribution, with the exception of the extreme tail (99th percentile). 

 
24 Thereby adding the insurers’ selling pressure on top of banks’ selling pressure does not exacerbate further the 

price impact dynamics on bonds. 
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Figure 12: Counterfactual - Banks’ Total Losses relative to Baseline Estimates conditional to 

the removal of Insurers’ Contribution to Price Impact Function Determination 

 
Note: We remove outliers for visualisation purposes. This set of counterfactual results are derived using a different 

set of price impact functions relative to baseline results. Roughly 15% of simulations are affected by this 

assumption. 

 

5.3 Market Risk Sensitivity Parameter 

We test how results change conditional on the adoption of a homogeneous Gamma parameter 

(𝜸) which models insurers’ market-risk-sensitivities affecting the passthrough to capital of an 

asset price shock. Hence, instead of using insurer-specific time-variant gamma parameters, we 

perform three counterfactual exercises using the mean (0.94), max (0.97) and min (0.85) of the 

entire Gamma sample so as to remove firm heterogeneity and create upper and lower bounds. 

The higher the gamma parameter (𝜸), the smaller the loss impact (1 − 𝜸) since it implies a 

larger decrease in insurer’s liability given an asset shock.  

In this respect, Figure 13 shows how a homogeneous Gamma parameter affects total losses in 

the system relative to baseline results. Roughly 45% of simulations are affected by this 

assumption. Respectively, setting the Gamma parameter equal to the minimum of the sample 

increases total losses in the system by 9% in the most severe simulations (90th), up to 13% at 

median outcome (50th) and up by 25% in the least severe events (25th). However, setting the 

Gamma parameter equal to the maximum of the sample decreases total losses in the system by 

3% in the most severe simulations (90th), up to 5% at median outcome (50th) and by 10% in the 

least extreme outcomes (25th). In the end, setting the gamma parameter equal to the average of 

the sample does not lead to a material over-estimation bias (less than 2%) since insurers tend 

to have a similar passthrough to capital (Figure 4). Nonetheless, an overestimation of the 

gamma parameter may materially lead to an underestimation of potential tail losses on an 
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insurer-basis, therefore highlighting from a supervisory perspective the importance of a proper 

calibration of insurers’ asset-liability passthrough calibration.   

Figure 13: Percentage Contribution of Gamma Parameter to Total Losses relative to baseline 

Estimates  

 
Note: We remove outliers for visualisation purposes. Roughly 25% of simulations are affected by this assumption. 

5.4 Benchmarking and Sensitivity to Retained Earnings  

Finally, we showcase the model accuracy in estimating the set of main regulatory ratios, CET1 

ratio (CET1) and Leverage ratio (LR) for the UK banking sector and Solvency ratio for the UK 

insurance sector, respectively reported in Figure 14a, and Chart C and Chart D in Appendix B. 

We find that the microstructural methodology replicates well the actual estimates of regulatory 

ratios both for banks and insurers, although the expected model-based estimates (average 

output) tend to overestimate the actual estimates consistently across quarters. On average, the 

CET1 ratio is higher by 60 basis points of RWAs, with a narrower gap during the COVID 

period (50 basis points) and larger gap in the post-COVID period (70 basis points). This is due 

to the assumption we made on retained earnings, which were set equal to 100% of realized net 

profits. However, in the real world, retained earnings vary over time (40%-80%) and they 

depend on each institution’s performance and dividend strategy adopted as well as on potential 

regulatory interventions. In fact, during the Covid-19 period, several authorities, among which 

the Bank of England, introduced temporary dividend distribution restrictions in order to 

strengthen banks’ resilience during this period of systemic stress (Acosta-Smith et al., 2024)25. 

Our results are also consistent with this stylized fact since during COVID the actual retained 

earnings ratio was higher, thereby showing a smaller gap between the average CET1 ratio and 

the actual value, whereas in the post-COVID period, in which the dividend distribution 

restrictions were removed, the estimated gap widens. The result sensitivity to retained earning 

 
25 See: https://www.bankofengland.co.uk/coronavirus  
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ratio is showcased in Figure 14b, in which we calculate the counterfactual CET1 ratio when 

the retained earnings ratio is equal to 50% and 0%. In this respect, we see that setting the 

retained earnings ratio equal to 50%, which is the median of the sample, make our model-based 

CET1 ratio estimates get very close to the actual ones. The gap between model-based expected 

CET1 ratio estimates and actual values reduces to 10 basis points during 2020, to 0 in 2021 

and 20 basis points in 2022-23.  Contrary the CET1 ratio would have materially deteriorated 

by roughly 140 basis points of RWAs relative to baseline estimates (Average CET1r 100%RE) 

if banks were allowed to pay out 100% of their retained earnings as dividends (Average CET1r 

0%RE). Hence, this result shows that temporary dividend distribution restrictions were 

effective policy instruments in strengthening banks’ capital base and in turn the banking 

system’s stability. In the end, we want to emphasize that the retained earnings ratio assumption 

only matters for the median and average outcomes and does not affect tail estimates. Overall, 

the microstructural methodology seems to replicate well the stylized facts here presented - 

regulatory ratios - and this allows us to evaluate more accurately the banking system’s stability 

under extreme stress conditions (VAR99 CET1r*).  In this respect, the CET1 ratio during 

extreme stress events remains well above the regulatory minimum requirement as well as above 

the 10% level which approximates the average regulatory capital buffer requirement26.  

Figure 14a: Banking System’s CET1 Ratio Model-Based Estimates 

 

Note: Variables flagged with (*) refer to model stimates based on 20.000 simulations, whereas “actual” refers to 

the real values realized in that quarter, and “regulatroy” refers to the regulatory minima requirements. Model 

estimates assumed 100% of retained earnings.   

 

 
26 Th stress test results based on the Annual Cyclical Scenario 2022-23 of the Bank of England estimate that 

after the first year of stress UK banks’ CET1 ratio would fall to 10.8%. See: https://www.bankofengland.co.uk/-

/media/boe/files/stress-testing/2023/stress-testing-the-uk-banking--system-2022-23-results.pdf  

https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2023/stress-testing-the-uk-banking--system-2022-23-results.pdf
https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2023/stress-testing-the-uk-banking--system-2022-23-results.pdf
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Figure 14b: Banking System’s Expected CET1 Ratio Estimates with Variation in Retained 

Earnings Assumption 

 

Note: Tag “%RE” refers to the percentgae of retained earnings assumed. Baseline estimates assume 100% of 

retained earnings and are flagged with (**), whereas “actual” refers to the real values realized in that quarter.  

Model estimates are based on 20.000 simulations. The counterfactual exercises are computed ex-post without 

taking into account the capital impact that a lower CET1 capital base have on feedback and amplification effects.  

Discussions and Conclusion 

This paper illustrates that feedback and amplification mechanisms - primarily fire-sales 

spillovers - materially increase the likelihood of experiencing extreme stress events - fatter left 

tail - as well as their severity - longer left tail. On top of this, amplification mechanisms also 

decrease the system’s profitability. We showcase that the profit channel is materially less 

important in the extreme tail (99th percentile) than the economic credit loss channel, 

respectively explaining 5% and 62% of total variation. This result corroborates findings in the 

existing literature on the significance of correlated exposures in determining systemic financial 

externalities (Elsinger et al. 2006; Acharya, 2009; Billio et al. 2012; Patro et al., 2013; and 

Glasserman and Young, 2015). Even in isolation, obligors’ idiosyncratic default shocks in the 

real economy due to intersectoral linkages (correlated defaults) may lead to material tail risk 

developments and to a non-negligible systemic event probability, whose severity and 

likelihood are further exacerbated via amplification mechanisms in the financial sector.  

Next, we disentangle the sectorial contribution of banks and insurers to the UK financial 

system’s profit and loss distribution, and especially tail risk developments, in which banks play 

a leading role (80% of total CCaR99) consistently with the larger share in the exposure network 

(81%). Nonetheless, we provide evidence that the importance of propagation channels differs 

across sectors as well as across percentiles of the profit and loss distribution. Specifically, in 

the extreme tail, approximated by expected shortfalls in the 99th percentile (CCaR99), we find 

that insurers are more affected than banks by economic credit losses, respectively 68% and 
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60%, while gross profits in both sectors play a less relevant contribution, 7% versus 5%. 

Moreover, fire-sale spillovers affect more banks (33%) than insurers (25%), although banks 

only hold 23% of their assets as securities, while insurers’ portfolio composition is made 

exclusively of securities. The low relative contribution of fire-sales to insurers’ tail risk is due 

to the limited passthrough of asset shock to capital which is modelled via the gamma parameter 

which captures insurers’ asset-liability adjustments, whose average of the sample is set around 

5%. This assumption on the market-risk sensitivity parameter is key to properly model shocks 

to insurers’ solvency position, which, when stressed, may further exacerbate losses in the range 

of 9% to 25%, depending on the realized stress level. Despite this limited pass-through to 

capital, the large share of insurers’ security portfolios invested into equity rather than bonds 

(70%-30%), for which the price impact distribution is more negatively affected (0-20% for 

equity versus 0-1% for bond and) exacerbate materially the fire-sale outcome. In this respect, 

we find that in the tail, insurers’ fire-sales losses seem to exacerbate those of banks, especially 

for severe (CCaR95) and medium (CCaR90) stress fire-sale events, but to a lesser extent in the 

extreme tail (CCaR99). This effect takes place via price-mediated equity contagion given that 

insurers are mostly invested into equity. This finding corroborates the role of the insurance 

sector in amplifying systemic stress (Weiß and Mühlnickel, 2014).  

Moreover, we show that using a homogeneous price impact function without either security-

specific selling pressures or market selling pressure may lead to overestimate losses in the right 

tail of the distribution (low stress events), consistently with the findings provided in Fukker et 

al. (2022). Nonetheless, we show that for medium (90th), severe (95th) and extreme stress events 

(99th) an homogeneous price impact function leads us to materially underestimate fire-sale 

losses in the range of -9% to -50%. Moreover, also related to the modelling of fire-sale 

dynamics, we provide evidence on the delta impact of a HQLA pecking order strategy versus 

a pro-rata approach. Consistently with Caccioli et al. (2024), we find that on average a pro-rata 

approach does overestimate FS losses compared to a HQLA pecking-order strategy. In this 

respect, we find a non-linear FS impact between the two strategies, which gets wider the lower 

the severity of the stress event the system experiences, respectively ranging from a factor of 7 

times to 20 times. This result corroborates findings by Jiang et al. (2017) and Schaanning 

(2016) that a pro-rata approach is more suitable for periods of stress (tail outcomes), whereas 

a HQLA pecking order strategy bring much larger benefits given a medium-low stress 

environment.  

Our interpretative framework, although with some limitations related to the exclusion of 

liquidity contagion and solvency-liquidity interactions which may further amplify the results 
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here documented, and the lack of the investment fund sector which plays an important role in 

the determination of the fire-sale price dynamics  as shown by Sydow et al. 2024, we showcase 

that systemic events may take place in isolation via idiosyncratic shocks to firms’ 

counterparties and that financial amplification mechanisms exacerbate materially the outcome 

both in terms of severity and loss correlation between the two sectors. The contribution of the 

drivers to the realized severity differs across percentile of the profit and loss distribution as 

well as across sectors and on a firm-basis, highlighting that a probabilistic approach combined 

with firm heterogeneity and multiple risk channels is necessary to unfold the role of 

interconnectedness and financial contagion in triggering market disruptions in modern 

financial systems. 
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Appendix A – Balance Sheet Accounting 

Banks – Profit and Loss Step 
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Appendix B – Sensitivity Analysis 

Chart A1: Conditional Tail Event Probability – By Firm Type (All Stress Events) 

 

Chart A2: Conditional Tail Event Probability – Time Series Evolution 

 

Chart B: HQLA High-rated Government Bond Price Impact Distribution 
   Panel (a)            Panel (b) 

        All Percentiles and All Volumes          5th percentile and 100M Volume 

 

 

% Price Drop % Price Drop 

Probability 
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Chart C: Banking System’s Leverage Ratio Model-Based Estimates 

 

Chart D: Insurance System’s Solvency II Ratio Model-Based Estimates 

 

Chart E: Banking System’s Median CET1 Ratio Estimates with Variation in Retained Earnings 

Assumption 

 
Note: Tag “%RE” refers to the percentgae of retained earnings assumed. Baseline estimates assume 100% of 

retained earnings and are flagged with (**), whereas “actual” refers to the real values realized in that quarter.  

Model estimates are based on 20.000 simulations   
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